16.在半徑為6cm的圓中,某扇形的弧所對的圓心角為$\frac{π}{4}$,則該扇形的周長是$12+\frac{3π}{2}$cm,該扇形的面積是$\frac{9π}{2}$cm2

分析 求出扇形的弧長,即可求出扇形的周長及面積.

解答 $12+\frac{3π}{2}$,$\frac{9π}{2}$;解:由題意,扇形的弧長l=6×$\frac{π}{4}$=$\frac{3}{2}$πcm,
∴扇形的周長為$12+\frac{3π}{2}$cm,扇形的面積S=$\frac{1}{2}×\frac{3π}{2}×6$=$\frac{9π}{2}$cm2
故答案為:$12+\frac{3π}{2}$,$\frac{9π}{2}$.

點評 此題主要考查了弧長公式,扇形的面積公式的應用,正確記憶弧長公式是解題關(guān)鍵,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.2016年9 月4日至5日在中國杭州召開了G20峰會,會后某10國集團領(lǐng)導人站成前排3人后排7人準備請攝影師給他們拍照,現(xiàn)攝影師打算從后排7人中任意抽2人調(diào)整到前排,使每排各5人.若調(diào)整過程中另外8人的前后左右相對順序不變,則不同調(diào)整方法的總數(shù)是(  )
A.$C_7^2A_3^2$B.$C_7^2A_5^5$C.$C_7^2A_5^2$D.$C_7^2A_4^2$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知△ABC中,A(1,3),BC邊所在的直線方程為y-1=0,AB邊上的中線所在的直線方程為x-3y+4=0.
(Ⅰ)求B,C點的坐標;
(Ⅱ)求△ABC的外接圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知點A(-3,0),B(3,0),動點P滿足|PA|=2|PB|.
(1)若點P的軌跡為曲線C,求曲線C的方程;
(2)若點Q在直線l1:x+y+3=0上,直線l2經(jīng)過點Q且與曲線C只有一個公共點M,當|QM|取最小值時,求直線QM的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設(shè)a=($\frac{1}{3}$)${\;}^{\frac{4}{5}}$,b=($\frac{1}{4}$)${\;}^{\frac{4}{5}}$,c=($\frac{1}{3}$)${\;}^{\frac{3}{5}}$,則( 。
A.a<b<cB.c<a<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.定義在R上的函數(shù)f(x)=2ax+b,其中實數(shù)a,b∈(0,+∞),若對做任意的x∈[-$\frac{1}{2}$,$\frac{1}{2}$],不等式|f(x)|≤2恒成立,則當a•b最大時,f(2017)的值是4035.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.以點(2,-1)為圓心,且與直線x+y=7相切的圓的方程是(x-2)2+(y+1)2=18.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知定義域為R的函數(shù)f(x)=$\frac{b-{2}^{x}}{{2}^{x}+a}$是奇函數(shù),f(1)=-$\frac{1}{3}$.
(1)求a,b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.某質(zhì)點的位移函數(shù)是s(t)=2t3-$\frac{1}{2}$gt2(g=10m/s2),則當t=3s時,它的速度是24m/s.

查看答案和解析>>

同步練習冊答案