20.已知數(shù)列{an}的通項為an=2n+3n,則其前n項和Sn=n2+n+$\frac{3}{2}$(3n-1).

分析 利用等差數(shù)列與等比數(shù)列的前n項和公式即可得出.

解答 解:∵數(shù)列{an}的通項為an=2n+3n
則其前n項和Sn=2(1+2+…+n)+(3+32+…+3n
=$2×\frac{n(n+1)}{2}$+$\frac{3({3}^{n}-1)}{3-1}$
=n2+n+$\frac{3}{2}$(3n-1).
故答案為:n2+n+$\frac{3}{2}$(3n-1).

點評 本題考查了等差數(shù)列與等比數(shù)列的前n項和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知f(x)=$\frac{lnx}{x}$,求f′(1)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若sin($\frac{π}{2}$+α)=-$\frac{3}{5}$,且α∈($\frac{π}{2}$,π),則sin(π-2α)=(  )
A.$\frac{24}{25}$B.$\frac{12}{25}$C.-$\frac{12}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求下列函數(shù)的微分.
y=ln3(x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)若函數(shù)f(x)=4x3-ax+3的單調(diào)遞減區(qū)間是[-$\frac{1}{2}$,$\frac{1}{2}$],則實數(shù)a的值是多少?
(2)若函數(shù)f(x)=4x3-ax+3在[-$\frac{1}{2}$,$\frac{1}{2}$]上是單調(diào)函數(shù),則實數(shù)a的取值范圍為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)x,y,z是大于0的實數(shù),則$\frac{xy+yz+zx}{6{x}^{2}+6{y}^{2}+{z}^{2}}$的最大值是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)復(fù)數(shù)z滿足z-3i=3+zi,則z=( 。
A.3B.-3C.3iD.-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)平面向量$\overrightarrow m=({-1,2}),\overrightarrow n=({2,b})$,若$\overrightarrow m∥\overrightarrow n$,則$|{\overrightarrow m-\overrightarrow n}|$等于( 。
A.$\sqrt{5}$B.$\sqrt{10}$C.$\sqrt{13}$D.$3\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知A、B、C為△ABC的三內(nèi)角,若$cos({B+C})=\frac{1}{2}$,則A=$\frac{2π}{3}$.

查看答案和解析>>

同步練習(xí)冊答案