8.已知集合A={x|0<x<2},B={x|x2-1<0},則A∪B=( 。
A.(-1,1)B.(-1,2)C.(1,2)D.(0,1)

分析 先分別求出集合A和B,由此能求出A∪B.

解答 解:集合A={x|0<x<2},B={x|x2-1<0}={x|-1<x<1},
A∪B={x|-1<x<2}=(-1,2).
故選:B.

點評 本題考查并集的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意并集定義的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知拋物線y2=4x,過焦點F的直線與拋物線交于A、B兩點,過A,B分別作x軸,y軸垂線,垂足分別為C、D,則|AC|+|BD|的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}滿足a1=1,a2=4,且對任意m,n,p,q∈N*,若m+n=p+q,則有am+an=ap+aq
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項和為Sn,求證:$\frac{1}{4}$≤Sn<$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)G為三角形ABC的重心,且$\overrightarrow{AG}$•$\overrightarrow{BG}$=0,若$\frac{1}{tanA}+\frac{1}{tanB}=\frac{λ}{tanC}$,則實數(shù)λ的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)復(fù)數(shù)z滿足z(3+i)=10i(i為虛數(shù)單位),則z的共軛復(fù)數(shù)為( 。
A.-1+3iB.1-3iC.1+3iD.-1-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個單位后得到函數(shù)g(x)的圖象如圖所示,則函數(shù)f(x)的解析式是(  )
A.$f(x)=sin({2x-\frac{π}{6}})$(x∈R)B.$f(x)=sin({2x+\frac{π}{6}})$(x∈R)C.$f(x)=sin({2x-\frac{π}{3}})$(x∈R)D.$f(x)=sin({2x+\frac{π}{3}})$(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖所示的多面體中,ABCD是平行四邊形,BDEF是矩形,ED⊥面ABCD,∠ABD=$\frac{π}{6}$,AB=2AD.
(Ⅰ)求證:平面BDEF⊥平面ADE;
(Ⅱ)若ED=BD,求AF與平面AEC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=sin($\frac{5π}{6}$-2x)-2sin(x-$\frac{π}{4}$)cos(x+$\frac{3π}{4}$).
(1)求函數(shù)f(x)的最小值正周期和單調(diào)遞增區(qū)間;
(2)若x0∈[$\frac{π}{3}$,$\frac{7π}{12}$],且f(x0)=$\frac{1}{3}$,求cos2x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=$\frac{1}{2}$tan(2x+$\frac{π}{3}$)+1的圖象的對稱中心為($\frac{1}{4}kπ-\frac{π}{6}$,1),k∈Z..

查看答案和解析>>

同步練習(xí)冊答案