【題目】在平面直角坐標系,長度為2的線段EF的兩端點E、F分別在兩坐標軸上運動.

(1)求線段EF的中點G的軌跡C的方程;

(2)設(shè)軌跡C軸交于兩點,P是軌跡C上異于的任意一點,直線交直線M,直線交直線N,求證:MN為直徑的圓C總過定點,并求出定點坐標.

【答案】1;2.

【解析】

1)設(shè),兩點坐標用表示,結(jié)合兩點間的距離公式,即可求得G的軌跡C的方程;

(2)由(1)求出兩點坐標,設(shè),分別求出直線、直線的方程,進而表示出MN兩點坐標,求出以MN為直徑的圓C的方程,根據(jù)對稱性,定點在軸上,求出圓C軸的交點,即為所求.

1)設(shè),由中點坐標公式得,

,整理得,,

線段EF的中點G的軌跡C的方程為;

2)由(1)得,,設(shè),

,直線方程為:,

,,,同理可求,

中點坐標為,

MN為直徑的圓C的方程為

,得

,C總過定點,定點坐標為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),為自然對數(shù)的底數(shù).

(1)當時,證明:函數(shù)只有一個零點;

(2)若函數(shù)存在兩個不同的極值點,,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的函數(shù)滿足,若恒成立,則實數(shù)的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在圖1所示的梯形中,于點,且.將梯形沿對折,使平面平面,如圖2所示,連接,取的中點.

(1)求證:平面平面

(2)在線段上是否存在點,使得直線平面?若存在,試確定點的位置,并給予證明;若不存在,請說明理由;

(3)設(shè),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線為焦點,且過點

1)求雙曲線與其漸近線的方程

2)若斜率為1的直線與雙曲線相交于兩點,且為坐標原點),求直線的方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是直線上一動點,PA、PB是圓的兩條切線,A、B為切點,若四邊形PACB面積的最小值是2,則的值是

A. B. C. 2 D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓的右頂點為,上頂點為.已知橢圓的離心率為.

)求橢圓的標準方程;

)設(shè)直線與橢圓交于兩點,且點在第二象限.延長線交于點,若的面積是面積的3倍,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知平面,,,的中點

1)求所成角的大小

2)求與平面所成的角的大小

3)求繞直線旋轉(zhuǎn)一周所構(gòu)成的旋轉(zhuǎn)體的體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是曲線上的點,是數(shù)列項和,且滿足

(1)若時,求的值;

(2)證明:數(shù)列是常數(shù)列;

(3)確定的取值集合M,使時,數(shù)列是單調(diào)遞增數(shù)列.

查看答案和解析>>

同步練習冊答案