【題目】已知是曲線上的點(diǎn),是數(shù)列前項(xiàng)和,且滿足
(1)若時(shí),求的值;
(2)證明:數(shù)列是常數(shù)列;
(3)確定的取值集合M,使時(shí),數(shù)列是單調(diào)遞增數(shù)列.
【答案】(1),,,;(2)見詳解;(3)
【解析】
(1)取,再利用即可求得.
(2)根據(jù)可以得出,再根據(jù)題意得,即可得,即可證明.
(3)根據(jù)已知條件可以推出數(shù)列和分別是以,為首項(xiàng)為公差的等差數(shù)列再由數(shù)列是單調(diào)增數(shù)列能夠推出的取值集合.
(1),,
當(dāng)時(shí),,,,
當(dāng)時(shí),, ,
當(dāng)時(shí),,,
當(dāng)時(shí),,,
,,,.
(2)①,
則②,
由②-①得③,
于是④,
由④-③得⑤,
因?yàn)?/span>是曲線上的點(diǎn),
所以,所以,是常數(shù),
即數(shù)列是常數(shù)數(shù)列.
(3)由①有,所以,由③有, ,所以,,而⑤表明:數(shù)列和分別是 以,為首項(xiàng),
6為公差的等差數(shù)列,所以,,
,
數(shù)列是單調(diào)遞增數(shù)列. 且對(duì)任意的成立. 且, 即所求的取值集合是
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,長(zhǎng)度為2的線段EF的兩端點(diǎn)E、F分別在兩坐標(biāo)軸上運(yùn)動(dòng).
(1)求線段EF的中點(diǎn)G的軌跡C的方程;
(2)設(shè)軌跡C與軸交于兩點(diǎn),P是軌跡C上異于的任意一點(diǎn),直線交直線于M點(diǎn),直線交直線于N點(diǎn),求證:以MN為直徑的圓C總過定點(diǎn),并求出定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:曲線表示雙曲線;:曲線表示焦點(diǎn)在軸上的橢圓.
(1)分別求出條件中的實(shí)數(shù)的取值范圍;
(2)甲同學(xué)認(rèn)為“是的充分條件”,乙同學(xué)認(rèn)為“是的必要條件”,請(qǐng)判斷兩位同學(xué)的說法是否正確,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)若時(shí),求函數(shù)的最小值;
(2)若,證明:函數(shù)有且只有一個(gè)零點(diǎn);
(3)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)用行列式判斷關(guān)于的二元一次方程組解的情況;
(2)用行列試解關(guān)于的二元一次方程組并對(duì)解的情況進(jìn)行討論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={1,2,3,4,5,6,7,8,9),在集合A中任取三個(gè)元素,分別作為一個(gè)三位數(shù)的個(gè)位數(shù),十位數(shù)和百位數(shù),記這個(gè)三位數(shù)為a,現(xiàn)將組成a的三個(gè)數(shù)字按從小到大排成的三位數(shù)記為I(a),按從大到小排成的三位數(shù)記為D(a)(例如a=219,則I(a)=129,D(a)=921),閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,任意輸入一個(gè)a,則輸出b的值為( )
A. 792 B. 693 C. 594 D. 495
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱中,,是中點(diǎn).
證明:平面;
線段上是否存在點(diǎn),使三棱錐的體積為?若存在,確定點(diǎn)的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)若函數(shù)存在5個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,底面ABC,是邊長(zhǎng)為2的正三角形,,E,F分別為BC,的中點(diǎn).
1求證:平面平面;
2求三棱錐的體積;
3在線段上是否存在一點(diǎn)M,使直線MF與平面沒有公共點(diǎn)?若存在,求的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com