2、設(shè)函數(shù)f(x)=(a-1)x是R上的減函數(shù),則a的取值范圍是( 。
分析:由指數(shù)函數(shù)的性質(zhì)知,函數(shù)f(x)=(a-1)x是R上的減函數(shù),由其底數(shù)在(0,1)上,由此關(guān)系求a的取值范圍.
解答:解:∵函數(shù)f(x)=(a-1)x是R上的減函數(shù),
∴a-1∈(0,1)
∴a∈(1,2)
故選B.
點(diǎn)評(píng):本題考查指數(shù)函數(shù)單調(diào)性的應(yīng)用,正確解答本題,關(guān)鍵是熟練掌握指數(shù)函數(shù)的性質(zhì),且能用這些性質(zhì)作出判斷,如本題由函數(shù)是減函數(shù)得出底數(shù)的范圍從而解出參數(shù)的取值范圍
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M是滿(mǎn)足下列性質(zhì)的函數(shù)f(x)的全體:存在非零常數(shù)T,對(duì)任意x∈R,有f(x+T)=T•f(x)成立.
(1)函數(shù)f(x)=x是否屬于集合M?說(shuō)明理由;
(2)設(shè)函數(shù)f(x)=ax(a>0,且a≠1)的圖象與y=x的圖象有公共點(diǎn),證明:f(x)=ax∈M;
(3)若函數(shù)f(x)=sinkx∈M,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=logax(a>0且a≠1),若f(x1•x2•…•x2009)=8,則f(x12)+f(x22)+…+f(x20082)+f(x20092)的值等于
16
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•南通三模)設(shè)函數(shù)f(x)=ax3-(a+b)x2+bx+c,其中a>0,b,c∈R.
(1)若f′(
13
)
=0,求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)求證:當(dāng)0≤x≤1時(shí),|f'(x)|≤max{f'(0),f'(1)}.(注:max{a,b}表示a,b中的最大值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•惠州模擬)設(shè)函數(shù)f(x)=x3-4x+a(0<a<2)有三個(gè)零點(diǎn)x1、x2、x3,且x1<x2<x3,則下列結(jié)論正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax3-(a+b)x2+bx+c,其中a>0.b,c∈R.
(1)計(jì)算f′(
1
3
);
(2)若x=
1
3
為函數(shù)f(x)的一個(gè)極值點(diǎn),求f(x)的單調(diào)區(qū)間;
(3)設(shè)M表示f′(0)與f′(1)兩個(gè)數(shù)中的最大值,求證:當(dāng)0≤x≤1時(shí),|f′(x)|≤M.

查看答案和解析>>

同步練習(xí)冊(cè)答案