A. | [1,2) | B. | (1,2) | C. | $[{1,\frac{3}{2}})$ | D. | $({1,\frac{3}{2}})$ |
分析 先確定函數(shù)的定義域然后求導數(shù)fˊ(x),在函數(shù)的定義域內(nèi)解方程fˊ(x)=0,使方程的解在定義域內(nèi)的一個子區(qū)間(k-1,k+1)內(nèi),建立不等關(guān)系,解之即可.
解答 解:因為f(x)定義域為(0,+∞),
又f′(x)=4x-$\frac{1}{x}$,
由f'(x)=0,得x=$\frac{1}{2}$,
當x∈(0,$\frac{1}{2}$)時,f'(x)<0,
當x∈($\frac{1}{2}$,+∞)時,f'(x)>0
據(jù)題意,$\left\{\begin{array}{l}{k-1<\frac{1}{2}<k+1}\\{k-1>0}\end{array}\right.$,
解得:1<k<$\frac{3}{2}$,
故選:D.
點評 本題主要考查了對數(shù)函數(shù)的導數(shù),以及利用導數(shù)研究函數(shù)的單調(diào)性等基礎(chǔ)知識,考查計算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{1}{3}$ | B. | $-\frac{1}{6}$ | C. | 0 | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {0,1,2,3} | B. | {0,1,2} | C. | {1,2} | D. | {1,2,3} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com