設橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點M(
2
,1)
,且左焦點為F1(-
2
,0)

(Ⅰ)求橢圓C的方程;
(Ⅱ)當過點P(4,1)的動直線l與橢圓C相交于兩不同點A,B時,在線段AB上取點Q,滿足|
AP
|
|
QB
|
=|
AQ
|
|
PB
|
,證明:點Q總在某定直線上.
分析:(Ⅰ)通過橢圓焦點坐標知c=
2
,且有a2=b2+c2,又點M的坐標滿足橢圓方程,則列方程組解之即可;
(Ⅱ)欲證點Q總在某定直線上,所以先設點Q的坐標為變量(x,y),點A、B的坐標分別為參數(shù)(x1,y1)、(x2,y2),然后根據(jù)已知條件可變形得
|
AP
|
|
PB
|
=
|
AQ
|
|
QB
|
,設其比值為λ則有
AP
=-λ
PB
、
AQ
QB
,此時利用定比分點定理可得A、B、P三點橫坐標關系及縱坐標關系,同時可得A、B、Q三點橫坐標關系及縱坐標關系,又因為點A、B的坐標滿足橢圓方程,則有x12+2y12=4,x22+2y22=4,再利用已得關系式構造x12+2y12與x22+2y22則可整體替換為4,同時消去參數(shù)λ,最后得到變量x、y的關系式,則問題得證.
解答:解:(Ⅰ)由題意得
c2=2
2
a2
+
1
b2
=1
c2=a2-b2

解得a2=4,b2=2,
所以橢圓C的方程為
x2
4
+
y2
2
=1


(Ⅱ)設點Q、A、B的坐標分別為(x,y),(x1,y1),(x2,y2).
由題設知|
AP
|
,|
PB
|
,|
AQ
|
,|
QB
|
均不為零,記λ=
|
AP
|
|
PB
|
=
|
AQ
|
|
QB
|
,則λ>0且λ≠1
又A,P,B,Q四點共線,從而
AP
=-λ
PB
,
AQ
QB

于是4=
x1x2
1-λ
,1=
y1y2
1-λ
,x=
x1x2
1+λ
,y=
y1y2
1+λ

從而
x
2
1
-λ2
x
2
2
1-λ2
=4x
①,
y
2
1
-λ2
y
2
2
1-λ2
=y
②,
又點A、B在橢圓C上,即x12+2y12=4 ③,x22+2y22=4 ④,
①+②×2并結合③、④得4x+2y=4,
即點Q(x,y)總在定直線2x+y-2=0上.
點評:本題綜合考查橢圓性質與定比分點定理,同時考查構造消元處理方程組的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設橢圓C:
x2
a2
+
y2
b2
=1
(a>b>1)右焦點為F,它與直線l:y=k(x+1)相交于P、Q兩點,l與x軸的交點M到橢圓左準線的距離為d,若橢圓的焦距是b與d+|MF|的等差中項.
(1)求橢圓離心率e;
(2)設N與M關于原點O對稱,若以N為圓心,b為半徑的圓與l相切,且
OP
OQ
=-
5
3
求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)設橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左.右焦點分別為F1F2,上頂點為A,過點A與AF2垂直的直線交x軸負半軸于點Q,且2
F1F2
+
F2Q
=
0

(1)若過A.Q.F2三點的圓恰好與直線l:x-
3
y-3=0相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點F2作斜率為k的直線l與橢圓C交于M.N兩點.試證明:
1
|F2M|
+
1
|F2N|
為定值;②在x軸上是否存在點P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•鹽城一模)設橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
恒過定點A(1,2),則橢圓的中心到準線的距離的最小值
5
+2
5
+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設橢圓C:
x2
a2
+
y2
b2
=1
(a,b>0)的左、右焦點分別為F1,F(xiàn)2,若P 是橢圓上的一點,|
PF1
|+|
PF2
|=4
,離心率e=
3
2

(1)求橢圓C的方程;
(2)若P 是第一象限內(nèi)該橢圓上的一點,
PF1
PF2
=-
5
4
,求點P的坐標;
(3)設過定點P(0,2)的直線與橢圓交于不同的兩點A,B,且∠AOB為銳角(其中O為坐標原點),求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左,右焦點分別為F1,F(xiàn)2,離心率為e=
2
2
,以F1為圓心,|F1F2|為半徑的圓與直線x-
3
y-3=0
相切.
(I)求橢圓C的方程;
(II)直線y=x交橢圓C于A、B兩點,D為橢圓上異于A、B的點,求△ABD面積的最大值.

查看答案和解析>>

同步練習冊答案