A. | 60 | B. | 75 | C. | 90 | D. | 120 |
分析 由x1+x2+x3+x4+x5+x6=2,結合xi的取值,討論xi所有取值的可能性,求出滿足x1+x2+x3+x4+x5+x6=2的數(shù)組(x1,x2,x3,x4,x6)的個數(shù).
解答 解:根據(jù)題意,∵x1+x2+x3+x4+x5+x6=2,xi∈{0,1,-1},i=1,2,3,4,5,6;
∴xi中有2個1和4個0,或3個1、1個-1和2個0,或4個1和2個-1
共有${C}_{6}^{2}+{C}_{6}^{3}{C}_{3}^{2}+{C}_{6}^{4}$=90個,
∴滿足x1+x2+x3+x4+x5+x6=2的數(shù)組(x1,x2,x3,x4,x6)的個數(shù)為90個.
故選:C.
點評 本題通過集合的概念,考查了排列組合的應用問題,解題時應深刻理解題意,抓住問題的關鍵,進行解答問題,是基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (x-2)2+y2=1 | B. | (x+2)2+y2=1 | C. | (x-2)2+y2=4 | D. | x2+(y-2)2=4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | C${\;}_{8}^{4}$ | B. | -C${\;}_{8}^{4}$ | C. | C${\;}_{9}^{5}$ | D. | -C${\;}_{9}^{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\overrightarrow{a}+\overrightarrow-\overrightarrow{c}$ | B. | $\overrightarrow{a}-\overrightarrow+\overrightarrow{c}$ | C. | $\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{c}$ | D. | -$\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow$-$\frac{1}{2}$$\overrightarrow{c}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 22 | B. | 34 | C. | 32 | D. | 40 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com