利用數(shù)學(xué)歸納法證明“ ”時(shí),
從“”變到“”時(shí),左邊應(yīng)增乘的因式是_________________;
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知 ,數(shù)列滿足:
。
(1)用數(shù)學(xué)歸納法證明:
(2)已知;
(3)設(shè)Tn是數(shù)列{an}的前n項(xiàng)和,試判斷Tn與n-3的大小,并說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

試證明:不論正數(shù)a、b、c是等差數(shù)列還是等比數(shù)列,當(dāng)n>1,n∈N*a、bc互不相等時(shí),均有:an+cn>2bn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(湖北理21)(本小題滿分14分)
已知m,n為正整數(shù).
(Ⅰ)用數(shù)學(xué)歸納法證明:當(dāng)x>-1時(shí),(1+x)m≥1+mx;
(Ⅱ)對(duì)于n≥6,已知,求證m=1,1,2…,n;
(Ⅲ)求出滿足等式3n+4m+…+(n+2)m=(n+3)n的所有正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明“(n+1)(n+2)·…·(n+n)=2n·1·3·…·(2n-1)”,從“k到k+1”左端需增乘的代數(shù)式為(  )
A.2k+1B.2(2k+1)C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)
是否存在常數(shù)a,b,使等式對(duì)于一切都成立?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明不等式成立,起始值至少應(yīng)取為( )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

利用數(shù)學(xué)歸納法證明“”的過程中,
由“n=k”變到“n=k+1”時(shí),不等式左邊的變化是          (  )
A.增加B.增加
C.增加,并減少D.增加,并減少

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明“當(dāng)n 為正奇數(shù)時(shí),能被整除”,在第二步時(shí),正確的證法是(     )
A.假設(shè),證明命題成立
B.假設(shè),證明命題成立
C.假設(shè),證明命題成立
D.假設(shè),證明命題成立

查看答案和解析>>

同步練習(xí)冊(cè)答案