20.在平行六面體ABCD-A1B1C1D1中,化簡(jiǎn)$\overrightarrow{AB}$+$\overrightarrow{AD}$+$\overrightarrow{A{A}_{1}}$=( 。
A.$\overrightarrow{A{C}_{1}}$B.$\overrightarrow{C{A}_{1}}$C.$\overrightarrow{B{C}_{1}}$D.$\overrightarrow{C{B}_{1}}$

分析 根據(jù)題意,畫出圖形,結(jié)合圖形,利用空間向量的加法運(yùn)算,即可得出結(jié)論.

解答 解:如圖所示,

平行六面體ABCD-A1B1C1D1中,
$\overrightarrow{AB}$+$\overrightarrow{AD}$+$\overrightarrow{A{A}_{1}}$=($\overrightarrow{AB}$+$\overrightarrow{AD}$)+$\overrightarrow{C{C}_{1}}$=$\overrightarrow{AC}$+$\overrightarrow{{CC}_{1}}$=$\overrightarrow{{AC}_{1}}$.
故選:A.

點(diǎn)評(píng) 本題考查了空間向量的線性運(yùn)算問題,也考查了數(shù)形結(jié)合的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10. 如圖,設(shè)橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左右焦點(diǎn)分別為F1、F2,過焦點(diǎn)F1的直線交橢圓于A、B兩點(diǎn),若以△ABF2的內(nèi)切圓的面積為π,設(shè)A(x1,y1)、B((x2,y2),則|y1-y2|值為$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知中心在原點(diǎn)O,焦點(diǎn)在x軸上的橢圓的一個(gè)頂點(diǎn)為B(0,1),B到焦點(diǎn)的距離為2.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)P,Q是橢圓上異于點(diǎn)B的任意兩點(diǎn),且BP⊥BQ,線段PQ的中垂線l與x軸的交點(diǎn)為(x0,0),求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知橢圓$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{4}$=1的兩焦點(diǎn)分別為F1,F(xiàn)2,過F1的直線與橢圓交于A,B兩點(diǎn),則△ABF2的周長(zhǎng)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知p:3x2-4ax+a2<0(a>0),q:$\left\{\begin{array}{l}{{x}^{2}-4x+3<0}\\{{x}^{2}-6x+8≥0}\end{array}\right.$,若p是q的必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)f′(x)為函數(shù)f(x)的導(dǎo)函數(shù),已知x2f′(x)+xf(x)=lnx,f(1)=$\frac{1}{2}$,則下列結(jié)論正確的是( 。
A.f(x)在(0,+∞)上有極大值$\frac{1}{2}$B.f(x)在(0,+∞)上有極小值$\frac{1}{2}$
C.f(x)在(0,+∞)單調(diào)遞增D.f(x)在(0,+∞)單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.一個(gè)袋中裝有四個(gè)大小、形狀完全相同的小球,小球的編號(hào)分別為1,2,3,4.
(Ⅰ)從袋中隨機(jī)取兩個(gè)小球,求取出的兩個(gè)小球的編號(hào)之和不小于5的概率;
(Ⅱ)先從袋中隨機(jī)取一個(gè)小球,記此小球的編號(hào)為m,將此小球放回袋中,然后再?gòu)拇须S機(jī)取一個(gè)小球,記該小球的編號(hào)為n,求n=m+2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=2acos2x+2$\sqrt{3}$bsinxcosx,且f(0)=2,f($\frac{π}{4}$)=$\sqrt{3}$+1.
(1)求f(x)的最大值及單調(diào)遞減區(qū)間;
(2)若α≠β,α,β∈(0,π),且f(α)=f(β),求tan(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知向量$\overrightarrow{a}$=(sin(2x-$\frac{π}{6}$),cos2$\frac{π}{4}$-cos2x),$\overrightarrow$=(1,-2),函數(shù)$f(x)=\vec a•\vec b(x∈R)$
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)f(x)圖象可以由y=sinx經(jīng)過怎樣的變換而得到?
(3)求在$x∈({-\frac{π}{6},\frac{π}{3}})$上的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案