10. 如圖,設(shè)橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左右焦點分別為F1、F2,過焦點F1的直線交橢圓于A、B兩點,若以△ABF2的內(nèi)切圓的面積為π,設(shè)A(x1,y1)、B((x2,y2),則|y1-y2|值為$\frac{10}{3}$.

分析 由已知△ABF2內(nèi)切圓半徑r=1.,從而求出△ABF2,再由ABF2面積=$\frac{1}{2}$|y1-y2|×2c,能求出|y1-y2|.

解答 解:∵橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左右焦點分別為F1,F(xiàn)2,
過焦點F1的直線交橢圓于A(x1,y1),B(x2,y2)兩點,△ABF2的內(nèi)切圓的面積為π,
∴△ABF2內(nèi)切圓半徑r=1.
△ABF2面積S=$\frac{1}{2}$×1×(AB+AF2+BF2)=2a=10,
∴ABF2面積=$\frac{1}{2}$|y1-y2|×2c=.$\frac{1}{2}$|y1-y2|×2×3=10,
∴|y1-y2|=$\frac{10}{3}$.
故答案為:$\frac{10}{3}$.

點評 本題考查兩點縱坐標(biāo)之差的絕對值的求法,是中檔題,解題時要認(rèn)真審題,注意橢圓性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.橢圓C的對稱中心是原點,對稱軸是坐標(biāo)軸,離心率與雙曲線${x^2}-\frac{y^2}{3}=1$離心率互為倒數(shù),且過$({\sqrt{3},-\frac{{\sqrt{3}}}{2}})$點,設(shè)E、F分別為橢圓的左右焦點.
(Ⅰ)求出橢圓方程;
(Ⅱ)一條縱截距為2的直線l1與橢圓C交于P,Q兩點,若以PQ直徑的圓恰過原點,求出直線方程;
(Ⅲ)直線l2:x=ty+1與曲線C交與A、B兩點,試問:當(dāng)t變化時,是否存在一條直線l2,使△ABE的面積為$2\sqrt{3}$?若存在,求出直線l2的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知圓C的方程為(x-1)2+y2=1,P是橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上一點,過P作圓的兩條切線,切點為A,B,則$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范圍為(  )
A.[$\frac{3}{2}$,+∞)B.[2$\sqrt{2}$-3,+∞)C.[2$\sqrt{2}$-3,$\frac{56}{9}$]D.[$\frac{3}{2}$,$\frac{56}{9}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.執(zhí)行如圖的程序框圖,若輸入1,2,3,則輸出的數(shù)依次是1,2,3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若AB為過橢圓$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1中心的線段,點A、B為橢圓上的點,F(xiàn)1,F(xiàn)2分別為橢圓的兩個焦點,則四邊形F1AF2B面積的最大值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)圓C2:x2+y2=b2,在橢圓C1上存在點P,過點P作圓C2的兩條切線PA,PB,切點分別為A,B,若$\overrightarrow{OA}$,$\overrightarrow{OB}$的夾角為$\frac{2π}{3}$,則橢圓的離心率的取值范圍是( 。
A.[$\frac{\sqrt{3}}{2}$,1)B.[$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$]C.[$\frac{\sqrt{2}}{2}$,1)D.[$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)P,Q分別為圓x2+(y-3)2=5和橢圓$\frac{x^2}{10}$+y2=1上的點,則P,Q兩點間的最大距離是( 。
A.2$\sqrt{5}$B.$\sqrt{19}$+$\sqrt{2}$C.4+$\sqrt{5}$D.3$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若集合A={x|-1≤x≤1},B={x|x≥0},則A∩B=( 。
A.{x|0≤x≤1}B.{x|-1≤x<0}C.{x|x<-1}D.{x|x≥-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在平行六面體ABCD-A1B1C1D1中,化簡$\overrightarrow{AB}$+$\overrightarrow{AD}$+$\overrightarrow{A{A}_{1}}$=( 。
A.$\overrightarrow{A{C}_{1}}$B.$\overrightarrow{C{A}_{1}}$C.$\overrightarrow{B{C}_{1}}$D.$\overrightarrow{C{B}_{1}}$

查看答案和解析>>

同步練習(xí)冊答案