分析 由已知△ABF2內(nèi)切圓半徑r=1.,從而求出△ABF2,再由ABF2面積=$\frac{1}{2}$|y1-y2|×2c,能求出|y1-y2|.
解答 解:∵橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左右焦點分別為F1,F(xiàn)2,
過焦點F1的直線交橢圓于A(x1,y1),B(x2,y2)兩點,△ABF2的內(nèi)切圓的面積為π,
∴△ABF2內(nèi)切圓半徑r=1.
△ABF2面積S=$\frac{1}{2}$×1×(AB+AF2+BF2)=2a=10,
∴ABF2面積=$\frac{1}{2}$|y1-y2|×2c=.$\frac{1}{2}$|y1-y2|×2×3=10,
∴|y1-y2|=$\frac{10}{3}$.
故答案為:$\frac{10}{3}$.
點評 本題考查兩點縱坐標(biāo)之差的絕對值的求法,是中檔題,解題時要認(rèn)真審題,注意橢圓性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{3}{2}$,+∞) | B. | [2$\sqrt{2}$-3,+∞) | C. | [2$\sqrt{2}$-3,$\frac{56}{9}$] | D. | [$\frac{3}{2}$,$\frac{56}{9}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{\sqrt{3}}{2}$,1) | B. | [$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$] | C. | [$\frac{\sqrt{2}}{2}$,1) | D. | [$\frac{1}{2}$,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{5}$ | B. | $\sqrt{19}$+$\sqrt{2}$ | C. | 4+$\sqrt{5}$ | D. | 3$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|0≤x≤1} | B. | {x|-1≤x<0} | C. | {x|x<-1} | D. | {x|x≥-1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{A{C}_{1}}$ | B. | $\overrightarrow{C{A}_{1}}$ | C. | $\overrightarrow{B{C}_{1}}$ | D. | $\overrightarrow{C{B}_{1}}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com