5.曲線y=x(x-1)(x-2)…(x-5)在x=0處的導(dǎo)數(shù)為( 。
A.120B.-120C.60D.-60

分析 將f(x)看出兩個(gè)因式的乘積,其中一個(gè)是x,利用積的導(dǎo)數(shù)運(yùn)算法則求出f(x)的導(dǎo)函數(shù),將x=0代入導(dǎo)函數(shù)求出答案.

解答 解:f′(x)=x′[(x-1)(x-2)…(x-5)]+x[(x-1)(x-2)…(x-5)]′
=[(x-1)(x-2)…(x-5)]+x[(x-1)(x-2)…(x-5)]′
∴f′(0)=(-1)(-2)…(-5)=-5!=-120
故選:B.

點(diǎn)評(píng) 求函數(shù)的導(dǎo)函數(shù)值,應(yīng)該先利用導(dǎo)數(shù)的運(yùn)算法則求出函數(shù)的導(dǎo)函數(shù)再求函數(shù)值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)f(x)是定義在R上的奇函數(shù),且y=f(2x-1)的周期為4,若f(1)=2.求f(2015)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求函數(shù)y=cos2x+4sinx的最值及取到最大值和最小值時(shí)的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若關(guān)于x的方程lnx+x=a在區(qū)間[1,e2]內(nèi)有唯一實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍為[1,2+e2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.一個(gè)幾何體的三視圖及尺寸如圖所示,其中主視圖、左視圖是等腰三角形,俯視圖是圓,則該幾何體的表面積為16π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知圓心在y軸上的⊙C經(jīng)過點(diǎn)A(-2,0),且⊙C與直線x+$\sqrt{3}$y=4相切,切點(diǎn)在第一象限.設(shè)O為坐標(biāo)原點(diǎn),⊙C與x軸正半軸交于B點(diǎn).
(1)求⊙C的方程;
(2)若⊙C內(nèi)的動(dòng)點(diǎn)P到點(diǎn)A,O,B的距離成等比數(shù)列,求$\overrightarrow{AP}$•$\overrightarrow{BP}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)A是△ABC的一個(gè)內(nèi)角,且sinA=$\frac{\sqrt{3}}{2}$,那么角A等于( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.kπ+$\frac{π}{3}$(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知全集U=R,集合A={x|0≤x≤5}與B={x|x-m<0},若B⊆CUA,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知極坐標(biāo)的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)O處,極軸與x軸的正半軸重合,且長度單位相同.直線l的極坐標(biāo)方程為:$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=10,若點(diǎn)P為曲線C:$\left\{\begin{array}{l}{x=2cosα}\\{y=2sinα+2}\end{array}\right.$(α為參數(shù))上的動(dòng)點(diǎn),其中參數(shù)α∈[0,2π].
(1)試寫出直線l的直角坐標(biāo)方程及曲線C的普通方程;
(2)求點(diǎn)P到直線l距離的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案