20.一個(gè)幾何體的三視圖及尺寸如圖所示,其中主視圖、左視圖是等腰三角形,俯視圖是圓,則該幾何體的表面積為16π.

分析 由三視圖可知:該幾何體是圓錐.其中高為$4\sqrt{2}$,底面半徑為2.即可得出

解答 解:由三視圖可知:該幾何體是圓錐.其中高為$4\sqrt{2}$,底面半徑為2.
∴該幾何體的表面積S=π×22+$\frac{1}{2}×$2π×2×$\sqrt{(4\sqrt{2})^{2}+{2}^{2}}$=16π.
故答案為:16π.

點(diǎn)評(píng) 本題考查了圓錐三視圖的有關(guān)知識(shí)與計(jì)算,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=-cos2x-sinx+2.
(1)若x∈R,求f(x)的最大值與最小值;
(2)若x∈[-$\frac{π}{6}$,π],求f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若存在非零實(shí)數(shù)x,y,使不等式(6a-1)x2-2xy+ay2≥0成立,則實(shí)數(shù)a的取值范圍是( 。
A.[0,+∞)B.(-∞-$\frac{1}{3}$)∪($\frac{1}{2}$,+∞)C.[-$\frac{1}{3}$,+∞)D.[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.己知函數(shù)f(x)=-2a•4x+2x-1.
(1)a=1時(shí),求f(x)在[-3,0]的值域;
(2)方程f(x)=0有負(fù)根,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知兩定點(diǎn)F1(-4,0),F(xiàn)2(4,0),動(dòng)點(diǎn)P滿足|PF1|一|PF2|=2a,則當(dāng)a=2和4時(shí),P點(diǎn)的軌跡是( 。
A.雙曲線和一條直線B.雙曲線和一條射線
C.雙曲線的一支和一條射線D.雙曲線的一支和一條直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.曲線y=x(x-1)(x-2)…(x-5)在x=0處的導(dǎo)數(shù)為(  )
A.120B.-120C.60D.-60

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖所示:“十字形”公路的交叉處周圍呈扇形形狀,某市規(guī)劃擬在這塊扇形土塵修建一個(gè)圓形廣揚(yáng),已知∠A0B=60°,AB的長(zhǎng)度=100πm,怎樣設(shè)計(jì)廣場(chǎng)的占地面積最大?其值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.A、B兩點(diǎn)的坐標(biāo)分別為(5,4)、(1,8),P是x2+y2=5上一動(dòng)點(diǎn),求S=PA2+PB2最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖是底面積為$\sqrt{3}$,體積為$\sqrt{3}$的正三棱錐的主視圖(等腰三角形)和左視圖(等邊三角形),此正三棱錐的側(cè)視圖的面積為( 。
A.$\frac{3\sqrt{3}}{2}$B.3C.$\sqrt{3}$D.$\frac{3}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案