已知函數(shù)f(x)=x3-px2-qx的圖象與x軸切于(1,0)點(diǎn),則f(x)的極大值、極小值分別為_(kāi)_______.
,0
分析:利用數(shù)f(x)=x
3-px
2-qx的圖象與x軸切于點(diǎn)(1,0),確定方程,解出p、q的值,得出f(x)的解析式,求出導(dǎo)數(shù),討論函數(shù)的增減性找出函數(shù)的極值即可.
解答:求導(dǎo)函數(shù),可得f′(x)=3x
2-2px-q
由函數(shù)f(x)=x
3-px
2-qx的圖象與x軸切于點(diǎn)(1,0)得:p+q=1,3-2p-q=0,解出p=2,q=-1
則函數(shù)f(x)=x
3-2x
2+x,f′(x)=3x
2-4x+1
令f′(x)=0得到:x=1或x=
①當(dāng)x≤
時(shí),f′(x)<0,f(x)單調(diào)減,極值=f(
)=
②當(dāng)x≥1時(shí),f′(x)>0,f(x)函數(shù)單調(diào)增,極值為f(1)=0
故比較大小得:f(x)的極大值為
,極小值為0.
故答案為:
,0.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查導(dǎo)數(shù)的幾何意義,考查函數(shù)的單調(diào)性與極值,屬于中檔題.