如圖,已知AB是過拋物線y2=2px(p>0)的焦點的弦,F(xiàn)為拋物線的焦點,點A(x1,y1),B(x2,y2).
求證:
(1)|AB|=x1+x2+p;
(2)y1y2=-p2,x1x2=
p2
4
;
(3)(理科)直線的傾斜角為θ時,求弦長|AB|.
(3)(文科)當p=2,直線AB的傾斜角為
π
4
時,求弦長|AB|.
(1)證明:∵AB是過拋物線y2=2px(p>0)的焦點的弦,
∴由拋物線定義可得|AB|=x1+
p
2
+x2+
p
2
=x1+x2+p;
(2)證明:設(shè)直線AB的方程為x=my+
p
2
,代入y2=2px,可得y2-2pmy-p2=0
∴y1y2=-p2,∴x1x2=
p2
4
;
(3)(理科)由(2)知,y1y2=-p2,y1+y2=2pm,∴
y21
+
y22
=(y1+y22-2y1y2=4p2m2+2p2,
y21
+
y22
=2p(x1+x2)=4p2m2+2p2,∴x1+x2=2pm2+p,
∴θ=90°時,m=0,∴|AB|=2p;θ≠90°時,m=
1
tanθ
,|AB|=
2p
tan2θ
+2p;
(4)(文科)由(3)(理科)知,|AB|=
2p
tan2θ
+2p=8.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,正方體ABCD-A1B1C1D1棱長為1,P為側(cè)面BB1C1C內(nèi)的動點,且PA=2PB,則P點所形成軌跡圖形的長度為( 。
A.
2
B.
2
3
3
π
C.πD.
3
6
π

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線的焦點在x軸上,拋物線上的P(-3,m)到焦點的距離為5,則拋物線的標準方程為( 。
A.y2=4xB.y2=8xC.y2=-4xD.y2=-8x

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點A(x0,y0)為拋物線y2=8x上的一點,F(xiàn)為該拋物線的焦點,若|AF|=6,則x0的值為(  )
A.4B.4
2
C.8D.8
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知F是拋物線y2=4x的焦點,A,B是拋物線上兩點,△AFB是正三角形,則該正三角形的邊長為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線y=4x2的焦點坐標是(  )
A.(1,0)B.(0,1)C.(
1
16
,0
D.(0,
1
16

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列命題中,正確的個數(shù)有(  )
(1)拋物線y=2x2的準線方程為y=-
1
8
;
(2)雙曲線
x2
4
-y2=1
的漸近線方程為y=±2x;
(3)橢圓
x2
4
+y2=1
的長軸長為2;
(4)雙曲線
x2
9
-
y2
7
=1
的離心率與橢圓
x2
16
+
y2
7
=1
的離心率之積為1.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線y2=8x上,定點A(3,2),F(xiàn)拋物線的焦點,P為拋物線上的動點,則|PF|+|PA|的最小值為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線y2=-12x的準線與雙曲線
x2
9
-
y2
3
=1
的兩條漸近線所圍成的三角形的面積等于(  )
A.3
3
B.2
3
C.2D.
3

查看答案和解析>>

同步練習冊答案