12.關于函數(shù)f(x)=sinx(sinx-cosx)的有關性質,下列敘述正確的是( 。
A.f(x)的最小正周期為2πB.f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]內單調遞增
C.f(x)的圖象關于(-$\frac{π}{2}$,0)對稱D.f(x)的圖象關于x=$\frac{π}{8}$對稱

分析 利用二倍角公式降冪,再由輔助角公式化積,然后逐一核對四個選項得答案.

解答 解:∵f(x)=sinx(sinx-cosx)=$si{n}^{2}x-sinxcosx=\frac{1}{2}(1-cos2x-sin2x)$
=$\frac{1}{2}-\frac{\sqrt{2}}{2}sin(2x+\frac{π}{4})$.
∴f(x)的最小正周期為π,A錯誤;
由$\frac{π}{2}+2kπ≤2x+\frac{π}{4}≤\frac{3π}{2}+2kπ$,得$\frac{π}{8}+kπ≤x≤\frac{5π}{8}+kπ$,k∈Z,可知f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]內不單調,故B錯誤;
∵f($-\frac{π}{2}$)=$\frac{1}{2}-\frac{\sqrt{2}}{2}sin(-π+\frac{π}{4})=1$,∴f(x)的圖象不關于(-$\frac{π}{2}$,0)對稱,故C錯誤;
∵f($\frac{π}{8}$)=$\frac{1}{2}-\frac{\sqrt{2}}{2}sin(\frac{π}{4}+\frac{π}{4})=\frac{1}{2}-\frac{\sqrt{2}}{2}$,∴f(x)的圖象關于x=$\frac{π}{8}$對稱,故D正確.
故選:D.

點評 本題主要考查三角函數(shù)式的化簡、正弦型函數(shù)的圖象與性質,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.下列函數(shù)中,在其定義域內是減函數(shù)的是( 。
A.f(x)=$\frac{1}{x}$B.f(x)=($\frac{1}{3}$)|x|C.f(x)=sinx-xD.f(x)=$\frac{lnx}{x}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.如圖是某市3月1日至14日的空氣質量指數(shù)趨勢圖.空氣質量指數(shù)小于100表示空氣質量優(yōu)良,空氣質量指數(shù)大于200表示空氣重度污染.某人隨機選擇3月1日至3月13日中的某一天到達該市,并停留2天.此人到達當日空氣質量優(yōu)良的概率$\frac{6}{13}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在平面直角坐標系xOy中,點A(-1,-2)、B(2,3)、C(-2,-1).
(1)求|$\overrightarrow{AB}+\overrightarrow{AC}}$|;
(2)設實數(shù)t滿足($\overrightarrow{AB}$-t$\overrightarrow{OC}$)•$\overrightarrow{OC}$=0,求t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知點A(5,2$\sqrt{2}$),F(xiàn)(1,0),動點P在拋物線y2=4x上運動,則|PA|2+|PF|2的最小值為18$.\end{array}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知$\overrightarrow{a}$,$\overrightarrow$是夾角為120°的單位向量,當向量λ$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$垂直時,λ的值為(  )
A.$\frac{5}{4}$B.-$\frac{5}{4}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知數(shù)列{an}的前n項和為Sn=n2+4n+1,
(Ⅰ)求數(shù)列{an}的通項公式; 
(Ⅱ)設bn=2n-1•(an-1),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.等比數(shù)列{an},Sn是{an}的前n項和.若a1=1,a4=8,則S6=63.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如果函數(shù)f(x)=ax(ax-3a2-1)(a>0且a≠1)在區(qū)間(-∞,0]上是減函數(shù),那么實數(shù)a的取值范圍是(  )
A.$(0,\frac{{\sqrt{3}}}{3}]$B.$(0,\frac{{\sqrt{3}}}{3}]∪$(1,+∞)C.$[\frac{{\sqrt{3}}}{3},1)$D.(1,+∞)

查看答案和解析>>

同步練習冊答案