A. | f(x)=$\frac{1}{x}$ | B. | f(x)=($\frac{1}{3}$)|x| | C. | f(x)=sinx-x | D. | f(x)=$\frac{lnx}{x}$ |
分析 根據(jù)反比例函數(shù)的性質(zhì)判斷A,根據(jù)指數(shù)函數(shù)的性質(zhì)判斷B,根據(jù)導(dǎo)數(shù)的應(yīng)用判斷C、D即可.
解答 解:對于A:f(x)=$\frac{1}{x}$在定義域(-∞,0)∪(0,+∞)上不單調(diào),故A不合題意;
對于B:f(x)=3-|x|,x≥0時,遞減,x<0時,遞增,故B不合題意;
對于C:f(x)=sinx-x,f′(x)=cosx-1≤0,故f(x)在R遞減,符合題意;
對于D:f(x)=$\frac{lnx}{x}$,f′(x)=$\frac{1-lnx}{{x}^{2}}$,令f′(x)>0,解得:0<x<e,令f′(x)<0,解得:x>e,故f(x)在(0,e)遞增,在(e,+∞)遞減,不合題意;
故選:C.
點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用以及常見函數(shù)的性質(zhì),是一道基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({1,\frac{{2\sqrt{3}}}{3}})$ | B. | (1,2) | C. | $({\frac{{2\sqrt{3}}}{3},+∞})$ | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,π) | B. | [0,$\frac{π}{4}$] | C. | [0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π) | D. | [0,$\frac{π}{4}$]∪($\frac{π}{2}$,π) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|1<x≤2} | B. | {x|1≤x≤2} | C. | {x|x<1} | D. | {x|-2≤x<1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{π}{6}$,$\frac{π}{6}$] | B. | [2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{6}$](k∈Z) | ||
C. | [2kπ-30°,2kπ+30°](k∈Z) | D. | (2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{6}$)((k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=|x| | B. | $y=-\frac{1}{x}$ | C. | y=2-x | D. | y=x3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)的最小正周期為2π | B. | f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]內(nèi)單調(diào)遞增 | ||
C. | f(x)的圖象關(guān)于(-$\frac{π}{2}$,0)對稱 | D. | f(x)的圖象關(guān)于x=$\frac{π}{8}$對稱 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com