3.曲線f(x)=$\frac{x}{x+2}$在點(diǎn)(-1,-1)處的切線方程為( 。
A.2x+y+2=0B.2x+y+3=0C.2x-y-1=0D.2x-y+1=0

分析 求出函數(shù)的導(dǎo)數(shù),求得切線的斜率,由點(diǎn)斜式方程即可得到所求方程.

解答 解:f(x)=$\frac{x}{x+2}$的導(dǎo)數(shù)為f′(x)=$\frac{2}{(x+2)^{2}}$,
在點(diǎn)(-1,-1)處的切線斜率為k=2,
即有切線的方程為y+1=2(x+1),
即為2x-y+1=0.
故選:D.

點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程,考查導(dǎo)數(shù)的幾何意義:函數(shù)在某點(diǎn)處的導(dǎo)數(shù)即為曲線在該點(diǎn)處的切線的斜率,考查直線方程的運(yùn)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x+2)是偶函數(shù),且當(dāng)x>2時(shí)滿足xf′(x)≥2f′(x)+f(x),則( 。
A.2f(1)<f(4)B.2f($\frac{3}{2}$)>f(3)C.f(0)<4f($\frac{5}{2}$)D.f(1)<f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)y=f(x)的圖象在點(diǎn)M(2,f(2))處的切線方程是y=x+4,則f(2)+f′(2)=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$kx2+k(k∈R).
(1)若曲線y=f(x)在點(diǎn)(2,f(2))處的切線的斜率為12,求函數(shù)f(x)的極值;
(2)設(shè)k<0,g(x)=f′(x),求F(x)=g(x2)在區(qū)間(0,$\sqrt{2}$)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.平面直角坐標(biāo)系中,角α頂點(diǎn)與原點(diǎn)O重合,始邊與x軸的非負(fù)半軸重合,終邊與以O(shè)為圓心的單位圓交于第四象限的點(diǎn)P,且tanα=-$\frac{3}{4}$,則點(diǎn)P的坐標(biāo)為$(\frac{4}{5},-\frac{3}{5})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知a=log${\;}_{\frac{1}{3}}$$\frac{1}{2}$,b=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,c=sin$\frac{1}{2}$,則( 。
A.c<a<bB.a<b<cC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知定義在R上的函數(shù)f(x)=ex+x2-x+sinx,則曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程是( 。
A.y=x+1B.y=x+2C.y=-x+1D.y=-x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=x3+x-3的一個(gè)零點(diǎn)所在的區(qū)間為(  )
A.(0,$\frac{1}{2}$)B.($\frac{1}{2}$,1)C.(1,$\frac{3}{2}$)D.($\frac{3}{2}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=|x-a|,其中a>1.
(Ⅰ)當(dāng)a=2時(shí),求不等式$\frac{f(x-2)-f(x+1)}{f(x-1)-f(x)}$<$\frac{f(x-1)+f(x)}{f(x-2)}$的解集;
(Ⅱ)若關(guān)于x的不等式|f(2x+a)-2f(x)|≤2的解集為{x|1≤x≤2},求a的值.

查看答案和解析>>

同步練習(xí)冊答案