求導(dǎo):f(x)=
a+blnx
x+1
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)[
g(x)
h(x)
]′
=
g′(x)h(x)-g(x)-h′(x)
h2(x)
,結(jié)合f(x)=
a+blnx
x+1
可得答案.
解答: 解:∵f(x)=
a+blnx
x+1
,
∴f′(x)=
b
x
(x+1)-(a+blnx)
(x+1)2
=
b+
b
x
-a-blnx
(x+1)2
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是導(dǎo)數(shù)的運(yùn)算,熟練掌握導(dǎo)數(shù)的運(yùn)算法則[
g(x)
h(x)
]′
=
g′(x)h(x)-g(x)-h′(x)
h2(x)
,是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正四棱錐的底面邊長為6,高為4,中截面把棱錐截成一個(gè)小棱錐和一個(gè)棱臺(tái),則棱臺(tái)的側(cè)面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)生在上學(xué)路上要經(jīng)過甲、乙兩個(gè)路口,假設(shè)這兩個(gè)路口是否遇到紅燈是相互獨(dú)立的,在甲路口遇到紅燈的概率是
1
3
,在乙路口遇到紅燈的概率是
1
2

(1)求這名學(xué)生在上學(xué)路上,沒有遇到紅燈的概率;
(2)求這名學(xué)生3次上學(xué)中,至少有2次上學(xué)遇到紅燈的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=1-sin
x
2
的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin(-
x
2
+
π
4
)的最小正周期為( 。
A、π
B、2π
C、4π
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷下列函數(shù)的奇偶性:
(1)f(x)=
2
sin2x;
(2)f(x)=sin(
3x
4
+
2
);
(3)f(x)=
1-cosx
+
cosx-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是偶函數(shù),且x≥0時(shí),f(x)=sin2x,則f(-
13π
6
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若An3=12Cn2,則n等于( 。
A、8B、4C、3或4D、5或6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

|
a
|=2
,|
b
|=1
,且
a
b
=1
,求
(1)向量
a
b
的夾角θ;
(2)|2
a
+
b
|

查看答案和解析>>

同步練習(xí)冊(cè)答案