【題目】雙紐線最早于1694年被瑞士數(shù)學(xué)家雅各布·伯努利用來描述他所發(fā)現(xiàn)的曲線.在平面直角坐標(biāo)系中,把到定點(diǎn),距離之積等于()的點(diǎn)的軌跡稱為雙紐線C.已知點(diǎn)是雙紐線C上一點(diǎn),下列說法中正確的有( )
①雙紐線C關(guān)于原點(diǎn)O中心對稱; ②;
③雙紐線C上滿足的點(diǎn)P有兩個; ④的最大值為.
A.①②B.①②④C.②③④D.①③
【答案】B
【解析】
對①,設(shè)動點(diǎn),把關(guān)于原點(diǎn)對稱的點(diǎn)代入軌跡方程,顯然成立;
對②,根據(jù)的面積范圍證明即可.
對③,易得若則在軸上,再根據(jù)的軌跡方程求解即可.
對④,根據(jù)題中所給的定點(diǎn),距離之積等于,再畫圖利用余弦定理分析中的邊長關(guān)系,進(jìn)而利用三角形三邊的關(guān)系證明即可.
對①,設(shè)動點(diǎn),由題可得的軌跡方程,把關(guān)于原點(diǎn)對稱的點(diǎn)代入軌跡方程顯然成立.故①正確;
對②,因?yàn)?/span>,故.
又,所以,
即,故.故②正確;
對③, 若則在的中垂線即軸上.
故此時,代入,
可得,即,僅有一個.故③錯誤;
對④,因?yàn)?/span>,故,
即,
因?yàn)?/span>,
故.
即,
所以.
又,當(dāng)且僅當(dāng)共線時取等號.
故,
即,解得.故④正確.
故①②④正確.
故選:B
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線:(為參數(shù),),曲線:(為參數(shù)),與相切于點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求的極坐標(biāo)方程及點(diǎn)的極坐標(biāo);
(2)已知直線:與圓:交于,兩點(diǎn),記的面積為,的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了保障某種藥品的主要藥理成分在國家藥品監(jiān)督管理局規(guī)定的值范圍內(nèi),某制藥廠在該藥品的生產(chǎn)過程中,檢驗(yàn)員在一天中按照規(guī)定每間隔2小時對該藥品進(jìn)行檢測,每天檢測4次:每次檢測由檢驗(yàn)員從該藥品生產(chǎn)線上隨機(jī)抽取20件產(chǎn)品進(jìn)行檢測,測量其主要藥理成分含量(單位:)根據(jù)生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條藥品生產(chǎn)線正常狀態(tài)下生產(chǎn)的產(chǎn)品的其主要藥理成分含量服從正態(tài)分布.
(1)假設(shè)生產(chǎn)狀態(tài)正常,記表示某次抽取的20件產(chǎn)品中其主要藥理成分含量在之外的藥品件數(shù),求的數(shù)學(xué)期望;
(2)在一天的四次檢測中,如果有一次出現(xiàn)了主要藥理成分含量在之外的藥品,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)異常情況,需對本次的生產(chǎn)過程進(jìn)行檢查;如果有兩次或兩次以上出現(xiàn)了主要藥理成分含量在之外的藥品,則需停止生產(chǎn)并對原材料進(jìn)行檢測.
①下面是檢驗(yàn)員在某次抽取的20件藥品的主要藥理成分含量:
10.02 | 9.78 | 10.04 | 9.92 | 10.14 | 9.22 | 10.13 | 9.91 | 9.95 |
10.09 | 9.96 | 9.88 | 10.01 | 9.98 | 10.05 | 10.05 | 9.96 | 10.12 |
經(jīng)計算得,,.其中為抽取的第件藥品的主要藥理成分含量,用樣本平均數(shù)作為的估計值,用樣本標(biāo)準(zhǔn)差作為的估計值,利用估計值判斷是否需對本次的生產(chǎn)過程進(jìn)行檢查?
②試確定一天中需停止生產(chǎn)并對原材料進(jìn)行檢測的概率(精確到0.001).
附:若隨機(jī)變量服從正態(tài)分布,則,,,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)到直線的距離為.
(1)求拋物線的方程;
(2)如圖,若,直線與拋物線相交于兩點(diǎn),與直線相交于點(diǎn),且,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校對高一年級學(xué)生寒假參加社區(qū)服務(wù)的次數(shù)進(jìn)行了統(tǒng)計,隨機(jī)抽取了名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻率分布統(tǒng)計表和頻率分布直方圖如下:
(1)求表中的值和頻率分布直方圖中的值,并根據(jù)頻率分布直方圖估計該校高一學(xué)生寒假參加社區(qū)服務(wù)次數(shù)的中位數(shù);
(2)如果用分層抽樣的方法從樣本服務(wù)次數(shù)在和的人中共抽取6人,再從這6人中選2人,求2人服務(wù)次數(shù)都在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】孫子定理是中國古代求解一次同余式組的方法,是數(shù)論中一個重要定理,最早可見于中國南北朝時期的數(shù)學(xué)著作《孫子算經(jīng)》,年英國來華傳教士偉烈亞力將其問題的解法傳至歐洲,年英國數(shù)學(xué)家馬西森指出此法符合年由高斯得出的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”.這個定理講的是一個關(guān)于整除的問題,現(xiàn)有這樣一個整除問題:將至這個整數(shù)中能被除余且被除余的數(shù)按由小到大的順序排成一列構(gòu)成一數(shù)列,則此數(shù)列的項數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過點(diǎn),以坐標(biāo)原點(diǎn)O為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線,從原點(diǎn)O作射線交于點(diǎn)M,點(diǎn)N為射線OM上的點(diǎn),滿足| ,記點(diǎn)N的軌跡為曲線C.
(1)①設(shè)動點(diǎn),記是直線的向上方向的單位方向向量,且,以t為參數(shù)求直線的參數(shù)方程
②求曲線C的極坐標(biāo)方程并化為直角坐標(biāo)方程;
(2)設(shè)直線與曲線C交于P,Q兩點(diǎn),求的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右頂點(diǎn)為A,上頂點(diǎn)為B.已知橢圓的離心率為,.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于,兩點(diǎn),與直線交于點(diǎn)M,且點(diǎn)P,M均在第四象限.若的面積是面積的2倍,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com