【題目】為了保障某種藥品的主要藥理成分在國(guó)家藥品監(jiān)督管理局規(guī)定的值范圍內(nèi),某制藥廠在該藥品的生產(chǎn)過(guò)程中,檢驗(yàn)員在一天中按照規(guī)定每間隔2小時(shí)對(duì)該藥品進(jìn)行檢測(cè),每天檢測(cè)4次:每次檢測(cè)由檢驗(yàn)員從該藥品生產(chǎn)線上隨機(jī)抽取20件產(chǎn)品進(jìn)行檢測(cè),測(cè)量其主要藥理成分含量(單位:)根據(jù)生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條藥品生產(chǎn)線正常狀態(tài)下生產(chǎn)的產(chǎn)品的其主要藥理成分含量服從正態(tài)分布.
(1)假設(shè)生產(chǎn)狀態(tài)正常,記表示某次抽取的20件產(chǎn)品中其主要藥理成分含量在之外的藥品件數(shù),求的數(shù)學(xué)期望;
(2)在一天的四次檢測(cè)中,如果有一次出現(xiàn)了主要藥理成分含量在之外的藥品,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過(guò)程可能出現(xiàn)異常情況,需對(duì)本次的生產(chǎn)過(guò)程進(jìn)行檢查;如果有兩次或兩次以上出現(xiàn)了主要藥理成分含量在之外的藥品,則需停止生產(chǎn)并對(duì)原材料進(jìn)行檢測(cè).
①下面是檢驗(yàn)員在某次抽取的20件藥品的主要藥理成分含量:
10.02 | 9.78 | 10.04 | 9.92 | 10.14 | 9.22 | 10.13 | 9.91 | 9.95 |
10.09 | 9.96 | 9.88 | 10.01 | 9.98 | 10.05 | 10.05 | 9.96 | 10.12 |
經(jīng)計(jì)算得,,.其中為抽取的第件藥品的主要藥理成分含量,用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,利用估計(jì)值判斷是否需對(duì)本次的生產(chǎn)過(guò)程進(jìn)行檢查?
②試確定一天中需停止生產(chǎn)并對(duì)原材料進(jìn)行檢測(cè)的概率(精確到0.001).
附:若隨機(jī)變量服從正態(tài)分布,則,,,,,.
【答案】(1)(2)①需對(duì)本次的生產(chǎn)過(guò)程進(jìn)行檢查②0.014
【解析】
(1)由已知.,由此可計(jì)算出期望;
(2)①由已知數(shù)據(jù)計(jì)算出,,得區(qū)間,有數(shù)據(jù)在這個(gè)區(qū)間外就要進(jìn)行檢測(cè);②設(shè)“在一次檢測(cè)中,發(fā)現(xiàn)需要對(duì)本次的生產(chǎn)過(guò)程進(jìn)行檢查”為事件,計(jì)算出,然后用互斥(對(duì)立)事件概率公式計(jì)算,需要停止生產(chǎn)進(jìn)行檢測(cè)的反而是4次檢測(cè)中發(fā)生4次,或發(fā)生3次只發(fā)生1次,則,從而得結(jié)論.
解:(1)抽取的一件藥品的主要藥理成分含量在之內(nèi)的概率為0.9974.
從而主要藥理成分含量在之外的概率為0.0026.
故.
的數(shù)學(xué)期望為.
(2)①由,,得的估計(jì)值為,
的估計(jì)值為,
由樣本數(shù)據(jù)可以看出有一件藥品的主要藥理成分含量在之外,因此需對(duì)本次的生產(chǎn)過(guò)程進(jìn)行檢查.
②設(shè)“在一次檢測(cè)中,發(fā)現(xiàn)需要對(duì)本次的生產(chǎn)過(guò)程進(jìn)行檢查”為事件,則
.
如果在一天中,需停止生產(chǎn)并對(duì)原材料進(jìn)行檢測(cè),則在一天的四次檢測(cè)中,兩次或兩次以上出現(xiàn)了主要藥理成分含量在之外的藥品,故概率為
,
.
故確定一天中需對(duì)原材料進(jìn)行檢測(cè)的概率為0.014.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,四邊形是等腰梯形,,,,三角形是等邊三角形,平面平面,E,F分別為,的中點(diǎn).
(1)求證:平面平面;
(2)若,求直線與平面所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】第二屆中國(guó)國(guó)際進(jìn)口博覽會(huì)于2019年11月5日至10日在上海國(guó)家會(huì)展中心舉行.它是中國(guó)政府堅(jiān)定支持貿(mào)易自由化和經(jīng)濟(jì)全球化,主動(dòng)向世界開(kāi)放市場(chǎng)的重要舉措,有利于促進(jìn)世界各國(guó)加強(qiáng)經(jīng)貿(mào)交流合作,促進(jìn)全球貿(mào)易和世界經(jīng)濟(jì)增長(zhǎng),推動(dòng)開(kāi)放世界經(jīng)濟(jì)發(fā)展.某機(jī)構(gòu)為了解人們對(duì)“進(jìn)博會(huì)”的關(guān)注度是否與性別有關(guān),隨機(jī)抽取了100名不同性別的人員(男、女各50名)進(jìn)行問(wèn)卷調(diào)查,并得到如下列聯(lián)表:
男性 | 女性 | 合計(jì) | |
關(guān)注度極高 | 35 | 14 | 49 |
關(guān)注度一般 | 15 | 36 | 51 |
合計(jì) | 50 | 50 | 100 |
(1)根據(jù)列聯(lián)表,能否有99.9%的把握認(rèn)為對(duì)“進(jìn)博會(huì)”的關(guān)注度與性別有關(guān);
(2)若從關(guān)注度極高的被調(diào)查者中按男女分層抽樣的方法抽取7人了解他們從事的職業(yè)情況,再?gòu)?/span>7人中任意選取2人談?wù)勱P(guān)注“進(jìn)博會(huì)”的原因,求這2人中至少有一名女性的概率.
附:.
參考數(shù)據(jù):
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校名學(xué)生參加軍事冬令營(yíng)活動(dòng),活動(dòng)期間各自扮演一名角色進(jìn)行分組游戲,角色按級(jí)別從小到大共種,分別為士兵、排長(zhǎng)、連長(zhǎng)、營(yíng)長(zhǎng)、團(tuán)長(zhǎng)、旅長(zhǎng)、師長(zhǎng)、軍長(zhǎng)和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級(jí)別連續(xù)的個(gè)不同角色.已知這名學(xué)生扮演的角色有名士兵和名司令,其余角色各人,現(xiàn)在新加入名學(xué)生,將這名學(xué)生分成組進(jìn)行游戲,則新加入的學(xué)生可以扮演的角色的種數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司有9個(gè)連在一起的停車(chē)位,現(xiàn)有5輛不同型號(hào)的轎車(chē)需停放,若要求剩余的4個(gè)車(chē)位中恰有3個(gè)連在起,則不同的停放方法有________種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市數(shù)學(xué)教研室對(duì)全市2018級(jí)15000名的高中生的學(xué)業(yè)水平考試的數(shù)學(xué)成績(jī)進(jìn)行調(diào)研,隨機(jī)選取了200名高中生的學(xué)業(yè)水平考試的數(shù)學(xué)成績(jī)作為樣本進(jìn)行分析,將結(jié)果列成頻率分布表如下:
數(shù)學(xué)成績(jī) | 頻數(shù) | 頻率 |
5 | 0.025 | |
15 | 0.075 | |
50 | 0.25 | |
70 | 0.35 | |
45 | 0.225 | |
15 | 0.075 | |
合計(jì) | 200 | 1 |
根據(jù)學(xué)業(yè)水平考試的數(shù)學(xué)成績(jī)將成績(jī)分為“優(yōu)秀”、“合格”、“不合格”三個(gè)等級(jí),其中成績(jī)大于或等于80分的為“優(yōu)秀”,成績(jī)小于60分的為“不合格”,其余的成績(jī)?yōu)椤昂细瘛?/span>.
(1)根據(jù)頻率分布表中的數(shù)據(jù),估計(jì)全市學(xué)業(yè)水平考試的數(shù)學(xué)成績(jī)的眾數(shù)、中位數(shù)(精確到0.1);
(2)市數(shù)學(xué)教研員從樣本中又隨機(jī)選取了名高中生的學(xué)業(yè)水平考試的數(shù)學(xué)成績(jī),如果這
(3)估計(jì)全市2018級(jí)高中生學(xué)業(yè)水平考試“不合格”的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】雙紐線最早于1694年被瑞士數(shù)學(xué)家雅各布·伯努利用來(lái)描述他所發(fā)現(xiàn)的曲線.在平面直角坐標(biāo)系中,把到定點(diǎn),距離之積等于()的點(diǎn)的軌跡稱(chēng)為雙紐線C.已知點(diǎn)是雙紐線C上一點(diǎn),下列說(shuō)法中正確的有( )
①雙紐線C關(guān)于原點(diǎn)O中心對(duì)稱(chēng); ②;
③雙紐線C上滿(mǎn)足的點(diǎn)P有兩個(gè); ④的最大值為.
A.①②B.①②④C.②③④D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》中有一分鹿問(wèn)題:“今有大夫、不更、簪裊、上造、公士,凡五人,共獵得五鹿.欲以爵次分之,問(wèn)各得幾何.”在這個(gè)問(wèn)題中,大夫、不更、簪裊、上造、公士是古代五個(gè)不同爵次的官員,現(xiàn)皇帝將大夫、不更、簪梟、上造、公士這5人分成兩組(一組2人,一組3人),派去兩地執(zhí)行公務(wù),則大夫、不更恰好在同一組的概率為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com