【題目】設(shè)曲線是焦點(diǎn)在軸上的橢圓,兩個(gè)焦點(diǎn)分別是是,,且,是曲線上的任意一點(diǎn),且點(diǎn)到兩個(gè)焦點(diǎn)距離之和為4.

1)求的標(biāo)準(zhǔn)方程;

2)設(shè)的左頂點(diǎn)為,若直線與曲線交于兩點(diǎn),不是左右頂點(diǎn)),且滿足,求證:直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

【答案】12)證明見解析,直線恒過定點(diǎn)

【解析】

1)根據(jù)橢圓的定義得,又焦點(diǎn)提供出值,從而可得,最終得橢圓方程.

2)首先明確,設(shè),把直線方程代入橢圓方程可得,注意,由,∴,即,代入可得關(guān)系(要滿足直線與橢圓相交),把這個(gè)關(guān)系代入直線方程可得出直線所過的定點(diǎn).

1)設(shè)橢圓方程為

由題意,即,∴,

∴橢圓的方程是.

2)由(1)可知,設(shè),

聯(lián)立,得

,

,,

,

,∴,即

,

,∴,

解得,且均滿足即

當(dāng)時(shí),的方程為,直線恒過,與已知矛盾;

當(dāng),的方程為,直線恒過.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)ygx)滿足條件gx+3)=﹣gx),且函數(shù)為奇函數(shù),給出以下四個(gè)命題:

1)函數(shù)gx)是周期函數(shù);

2)函數(shù)gx)的圖象關(guān)于點(diǎn)對稱;

3)函數(shù)gx)為R上的偶函數(shù);

4)函數(shù)gx)為R上的單調(diào)函數(shù).

其中真命題的序號為_____(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)在橢圓)上,且點(diǎn)到左焦點(diǎn)的距離為3.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)為坐標(biāo)原點(diǎn),與直線平行的直線交橢圓于不同兩點(diǎn)、,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,過點(diǎn)的直線與橢圓交于兩點(diǎn),延長交橢圓于點(diǎn),的周長為8.

(1)求的離心率及方程;

(2)試問:是否存在定點(diǎn),使得為定值?若存在,求;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左焦點(diǎn)為,下頂點(diǎn)為,上頂點(diǎn)為,是等邊三角形.

(Ⅰ)求橢圓的離心率;

(Ⅱ)設(shè)直線,過點(diǎn)且斜率為的直線與橢圓交于點(diǎn) 異于點(diǎn),線段的垂直平分線與直線交于點(diǎn),與直線交于點(diǎn),若.

(ⅰ)求的值;

(ⅱ)已知點(diǎn),點(diǎn)在橢圓上,若四邊形為平行四邊形,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】趙爽是我國漢代數(shù)學(xué)家、天文學(xué)家,他在注解《周髀算經(jīng)》時(shí),介紹了勾股圓方圖,亦稱趙爽弦圖,它被2002年國際數(shù)學(xué)家大會選定為會徽.“趙爽弦圖是以弦為邊長得到的正方形,該正方形由4個(gè)全等的直角三角形加上中間一個(gè)小正方形組成類比趙爽弦圖,可類似地構(gòu)造如圖所示的圖形它是由3個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成的一個(gè)大等邊三角形設(shè)DF2AF2,若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自三個(gè)全等三角形(陰影部分)的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=lnxbR),gx.

1)討論函數(shù)fx)的單調(diào)性

2)是否存在實(shí)數(shù)b使得函數(shù)yfx)在x∈(,+∞)上的圖象存在函數(shù)ygx)的圖象上方的點(diǎn)?若存在,請求出最小整數(shù)b的值,若不存在,請說明理由.(參考數(shù)據(jù)ln20.6931,1.6487

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為為參數(shù)),直線與曲線分別交于,兩點(diǎn).

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若點(diǎn)的極坐標(biāo)為,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,函數(shù),處取得極值,其中.

1)求實(shí)數(shù)t的取值范圍;

2)判斷上的單調(diào)性并證明;

3)已知上的任意、,都有,令,若函數(shù)3個(gè)不同的零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案