3.某教育主管部門到一所中學(xué)檢查學(xué)生的體質(zhì)健康情況.從全體學(xué)生中,隨機抽取12名進行體質(zhì)健康測試,測試成績(百分制)以莖葉圖形式表示如下:根據(jù)學(xué)生體質(zhì)健康標(biāo)準(zhǔn),成績不低于76的為優(yōu)良.
(Ⅰ)寫出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(Ⅱ)將頻率視為概率.根據(jù)樣本估計總體的思想,在該校學(xué)生中任選3人進行體質(zhì)健康測試,求至少有1人成績是“優(yōu)良”的概率.

分析 (Ⅰ)利用莖葉圖能求出這組數(shù)據(jù)的眾數(shù),中位數(shù).
(Ⅱ)抽取的12人中成績是“優(yōu)良”的頻率為$\frac{3}{4}$,由此得到從該校學(xué)生中任選1人,成績是“優(yōu)良”的概率為$\frac{3}{4}$,從而能求出“在該校學(xué)生中任選3人,至少有1人成績是‘優(yōu)良’”的概率.

解答 解:(Ⅰ)由莖葉圖,知:
這組數(shù)據(jù)的眾數(shù)為86,中位數(shù)為86.
(Ⅱ)抽取的12人中成績是“優(yōu)良”的頻率為$\frac{3}{4}$,
故從該校學(xué)生中任選1人,成績是“優(yōu)良”的概率為$\frac{3}{4}$,
設(shè)“在該校學(xué)生中任選3人,至少有1人成績是‘優(yōu)良’的事件”為A,
則P(A)=1-${C}_{3}^{0}(\frac{1}{4})^{3}$=$\frac{63}{64}$.

點評 本小題主要考查莖葉圖、眾數(shù)、中位數(shù)、概率等基礎(chǔ)知識,考查數(shù)據(jù)處理能力、運算求解能力以及應(yīng)用意識,考查必然與或然思想等,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,內(nèi)角A,B,C,的對邊分別為a,b,c,已知向量$\overrightarrow{m}$=(cos$\frac{3π}{2}$,-sin$\frac{3π}{2}$),$\overrightarrow{n}$=(cos$\frac{A}{2}$,sin$\frac{A}{2}$),且滿足|$\overrightarrow{m}$+$\overrightarrow{n}$|=$\sqrt{3}$
(1)求角A的大;
(2)若b+c=$\sqrt{3}$a,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.為了解某社區(qū)物業(yè)部門對本小區(qū)業(yè)主的服務(wù)情況,隨機訪問了100位業(yè)主,根據(jù)這100位業(yè)主對物業(yè)部門的評分情況,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].由于某種原因,有個數(shù)據(jù)出現(xiàn)污損,請根據(jù)圖中其他數(shù)據(jù)分析,評分不小于80分的業(yè)主有( 。┪唬
A.43B.44C.45D.46

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某市5年中的煤氣消耗量與使用煤氣戶數(shù)的歷史資料如下:
年份20062007200820092010
x用戶(萬戶)11.11.51.61.8
y(萬立方米)6791112
(1)檢驗是否線性相關(guān);
(2)求回歸方程;
(3)若市政府下一步再擴大兩千煤氣用戶,試預(yù)測該市煤氣消耗量將達到多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列每對向量垂直的有( 。⿲
(1)(3,4,0),(0,0,5)
(2)(3,1,3),(1,0,-1)
(3)(-2,1,3),(6,-5,7)
(4)(6,0,12),(6,-5,7)
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知A,B是單位圓O上的點,C是單位圓O與x軸正半軸的交點,點A的坐標(biāo)為($\frac{3}{5}$,$\frac{4}{5}$),三角形AOB為直角三角形,點B在第二象限
(1)求sin∠COA和cos∠COA的值
(2)求直線OB的方程
(3)求cos∠COB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.命題“若$\frac{{{a_n}+{a_{n+2}}}}{2}<{a_{n+1}}\;(n∈{{N}^*})$,則數(shù)列{an}為遞減數(shù)列”的逆否命題是若數(shù)列數(shù)列{an}不為遞減數(shù)列,則$\frac{{a}_{n}+{a}_{n+2}}{2}$≥an+1,n∈N*.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)=ax3+bx+c(a>0)為奇函數(shù),其圖象在點(1,f(1))處的線與直線x-6y-7=0垂直,導(dǎo)函數(shù)f′(x)的最小值為-12.
(1)求a,b,c的值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間,并求函數(shù)f(x)在[-1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知甲、乙兩組數(shù)據(jù)如莖葉圖所示,若它們的中位數(shù)相同,平均數(shù)也相同.
(1)求m,n的值;
(2)通過定量計算,試比較甲、乙兩組數(shù)據(jù)的分散程度.

查看答案和解析>>

同步練習(xí)冊答案