若實數(shù)x,y滿足x²+y²-2x+4y=0,則x-2y的最大值為 (    )

A.             B.10               C.9                D.5+2

 

【答案】

B

【解析】

試題分析:解:先根據(jù)x,y滿足x2+y2-2x+4y=0畫出圖形,設(shè)z=x-2y,將z的值轉(zhuǎn)化為直線z=x-2y在y軸上的截距,當(dāng)直線z=x-2y經(jīng)過點A(2,-4)時,z最大,最大值為:10.故x-2y的最大值為B

考點:幾何意義的運用

點評:本題主要考查了簡單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.借助于平面圖形,用幾何方法處理代數(shù)問題,體現(xiàn)了數(shù)形結(jié)合思想、化歸思想.線性規(guī)劃中的最優(yōu)解,通常是利用平移直線法確定

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足
x-y-2≤0
x+2y-5≥0
y-2≤0
則M=x+y
的最小值是(  )
A、
1
3
B、2
C、3
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x、y滿足
(x-y+6)(x+y-6)≥0
1≤x≤4
,則
y
x
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足
x-y+1≤0
x≤0
,則x2+y2的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•衢州一模)若實數(shù)x,y滿足
x+y-2≥0
x≤4
y≤5
,則s=y-x的最大值是
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•深圳二模)若實數(shù)x,y滿足
x≤1
y≥0
x-y≥0
,則x+y的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊答案