給出命題:①x0∈R,使x3<1; ②x0∈Q,使x2=2;
x∈N,有x3>x2; ④x∈R,有x2+1>0;
其中的真命題是:
[     ]
A.①④
B.②③     
C.①③
D.②④
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題
①命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”;
②命題“存在x0∈R,2x0≤0”的否定是“對(duì)任意的x∈R,2x>0”;
③將函數(shù)y=|x+1|的圖象按向量
a
=(-1,0)平移,得到的圖象的函數(shù)表達(dá)式為y=|x|;
④將函數(shù)y=sinx+1的圖象上的所有點(diǎn)的縱坐標(biāo)變?yōu)樵瓉淼膬杀叮M坐標(biāo)不變),得到的圖象的函數(shù)表達(dá)式為y=2sinx+1.
以上命題正確的是
①②
①②
.(注:把你認(rèn)為正確的命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題,其中正確的命題的個(gè)數(shù)為( 。
①命題“存在x0∈R,2x0≤0”的否定是“.對(duì)任意的x∈R,2x>0”;
②函數(shù)y=tan
x
2
的對(duì)稱中心為(kπ,0),k∈Z;
log2sin
π
12
+log2cos
π
12
=-2;
④[cos(3-2x)]′=-2sin(3-2x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•長春模擬)給出下列四個(gè)命題:
①?x0∈R,使得
1
2
sinx0+
3
2
cosx0>1;
②設(shè)f(x)=sin(2x+
π
3
),則?x∈(-
π
3
π
6
),必有f(x)<f(x+0.1);
③設(shè)f(x)=cos(x+
π
3
),則函數(shù)y=f(x+
π
6
)是奇函數(shù);
④設(shè)f(2x)=2sin2x,則f(x+
π
3
)=2sin(2x+
π
3
).
其中正確的命題的序號(hào)為
①③
①③
(把所有滿足要求的命題序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

給出下列四個(gè)命題:
①?x0∈R,使得數(shù)學(xué)公式sinx0+數(shù)學(xué)公式cosx0>1;
②設(shè)f(x)=sin(2x+數(shù)學(xué)公式),則?x∈(-數(shù)學(xué)公式,數(shù)學(xué)公式),必有f(x)<f(x+0.1);
③設(shè)f(x)=cos(x+數(shù)學(xué)公式),則函數(shù)y=f(x+數(shù)學(xué)公式)是奇函數(shù);
④設(shè)f(2x)=2sin2x,則f(x+數(shù)學(xué)公式)=2sin(2x+數(shù)學(xué)公式).
其中正確的命題的序號(hào)為________(把所有滿足要求的命題序號(hào)都填上).

查看答案和解析>>

同步練習(xí)冊答案