7.若復(fù)數(shù)z滿足z+|z|=3-$\sqrt{3}$i,則z的實部為( 。
A.1B.-1C.3D.-3

分析 利用待定系數(shù)法建立方程關(guān)系進行求解即可.

解答 解:∵復(fù)數(shù)z滿足z+|z|=3-$\sqrt{3}$i,
∴設(shè)z=a-$\sqrt{3}$i,
則a-$\sqrt{3}$i+$\sqrt{{a}^{2}+3}$=3-$\sqrt{3}$i,
則a+$\sqrt{{a}^{2}+3}$=3,
即$\sqrt{{a}^{2}+3}$=3-a,
由3-a≥0得a≤3,
則平方得a2+3=9-6a+a2
即6a=6,則a=1,
即z=1-$\sqrt{3}$i,實部為1
故選:A

點評 本題主要考查復(fù)數(shù)的基本運算,利用待定系數(shù)法建立方程是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知f(x)=sinωx,(ω>0)的部分圖象如圖所示,且($\overrightarrow{OP}$+$\overrightarrow{OQ}$)•$\overrightarrow{OM}$=2,則ω的值是π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在區(qū)間[1,2]上隨機取一個數(shù)r,則使得圓x2+y2=r2與直線x+y+2=0存在公共點的概率為2-$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知tan(α+$\frac{π}{4}$)=-2,則tanα=3,cos2α-sin2α=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖所示,圓C中,弦AB的長度為4,則$\overrightarrow{AB}$•$\overrightarrow{AC}$的值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知單位圓上三個不同點A,B,C,若|$\overrightarrow{AB}$-$\overrightarrow{AC}$|=2,則向量$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知全集U=R,A={x|-x2+1<0},B={x|lnx<0},則(∁UA)∩B=(  )
A.B.A={x|x≤1}C.{x|x<1}D.{x|0<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.我國大力提倡足球運動,從2013年開始高校的體考生招生也向招收足球項目的考生傾斜,某高校(四年制)為了解近四年學(xué)校招收體考生中足球項目考生的情況,做了如下統(tǒng)計,現(xiàn)以2012年為統(tǒng)計起始年,記為x=0,以足球項目考生占所有體考生的比例為y.
2012級2013級2014級2015級
x0123
體考生250260300300
足球項目考生35394548
y0.140.15
(1)已知y關(guān)于變量x的變化關(guān)系滿足線性回歸方程$\widehaty$=$\widehatb$x+$\widehata$,其中$\widehata$=0.141,求出回歸方程;2016級計劃足球項目考生60人,根據(jù)線性回歸方程2016級總的體考生將招收多少人(人數(shù)四舍五入);
(2)開學(xué)后舉行了一次新生足球見面賽,由15級16級的足球項目考生共同組成一支18人足球隊,按分層抽樣確定15級,16級的足球隊員人數(shù).
(i)求足球隊中,15級和16級的足球隊員各有多少人?
(ii)比賽上場隊員有11人,其余7人在場外替補,已知在場上有6名16級學(xué)生,在比賽過程中有2名替補隊員被替換上場,求替換上場的選手中恰好有1名16級的新生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.近年來我國電子商務(wù)行業(yè)迎來篷布發(fā)張的新機遇,2015年雙11期間,某購物平臺的銷售業(yè)績高達918億人民幣,與此同時,相關(guān)管理部門推出了針對電商的商品和服務(wù)的評價體系,現(xiàn)從評價系統(tǒng)中選出200次成功交易,并對其評價進行統(tǒng)計,對商品的好評率為0.6,對服務(wù)的好評率為0.75,其中對商品和服務(wù)都做出好評的交易為80次.
(Ⅰ)完成商品和服務(wù)評價的2×2列聯(lián)表,并說明是否可以在犯錯誤概率不超過0.1%的前提下,認為商品好評與服務(wù)好評有關(guān)?
(Ⅱ)若將頻率視為概率,某人在該購物平臺上進行的5次購物中,設(shè)對商品和服務(wù)全好評的次數(shù)為隨機變量X.
①求對商品和服務(wù)全好評的次數(shù)X的分布列(概率用組合數(shù)算式表示);
②求X的數(shù)學(xué)期望和方差.
參考數(shù)據(jù)及公式如下:
 P(K2≥k) 0.150.10 0.05 0.025 0.010 0.005 0.001 
 k 2.0722.706 3.841 5.024 6.635 7.879 10.828 
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步練習(xí)冊答案