(本小題滿分12分)
已知直線,軸交于點(diǎn),動(dòng)點(diǎn)到直線的距離比到點(diǎn)的距離大.
(Ⅰ)求點(diǎn)的軌跡的方程;      
(Ⅱ)過(guò)點(diǎn)作直線交曲線兩點(diǎn),若,求此直線的方程.
解:(Ⅰ)解法1.依題意,動(dòng)點(diǎn)到直線和點(diǎn)的距離相等,所以,即.……………………………………………………4分
由跟與系數(shù)的關(guān)系得

…………………………………………………………………………………10分
由①、③得,,代入②,得,
所以所求直線方程為…………………………………………………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
給定橢圓,稱圓心在坐標(biāo)原點(diǎn),半徑為的圓是橢圓的“伴隨圓”. 若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到距離為
(Ⅰ)求橢圓C及其“伴隨圓”的方程;
(Ⅱ)若過(guò)點(diǎn)的直線與橢圓C只有一個(gè)公共點(diǎn),且截橢圓C的“伴隨圓”所得的弦長(zhǎng)為,求的值;
(Ⅲ)過(guò)橢圓C“伴橢圓”上一動(dòng)點(diǎn)Q作直線,使得與橢圓C都只有一個(gè)公共點(diǎn),試判斷直線的斜率之積是否為定值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓的長(zhǎng)軸長(zhǎng)為4,焦距為2,F(xiàn)1、F2分別為橢圓的左、右焦點(diǎn),直線過(guò)點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于點(diǎn),線段垂直平分線交于點(diǎn)
(1)求橢圓的標(biāo)準(zhǔn)方程和動(dòng)點(diǎn)的軌跡的方程。
(2)過(guò)橢圓的右焦點(diǎn)作斜率為1的直線交橢圓于A、B兩點(diǎn),求的面積。
(3)設(shè)軌跡軸交于點(diǎn),不同的兩點(diǎn)在軌跡上,
滿足求證:直線恒過(guò)軸上的定點(diǎn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.圓錐曲線上任意兩點(diǎn)連成的線段稱為弦。若圓錐曲線上的一條弦垂直于其對(duì)稱軸,我們將該弦稱之為曲線的垂軸弦。已知點(diǎn)是圓錐曲線C上不與頂點(diǎn)重合的任意兩點(diǎn),是垂直于軸的一條垂軸弦,直線分別交軸于點(diǎn)和點(diǎn)。

(1)試用的代數(shù)式分別表示
(2)若C的方程為(如圖),求證:是與和點(diǎn)位置無(wú)關(guān)的定值;
(3)請(qǐng)選定一條除橢圓外的圓錐曲線C,試探究經(jīng)過(guò)某種四則運(yùn)算(加、減、乘、除),其結(jié)果是否是與和點(diǎn)位置無(wú)關(guān)的定值,寫出你的研究結(jié)論并證明。
(說(shuō)明:對(duì)于第3題,將根據(jù)研究結(jié)論所體現(xiàn)的思維層次,給予兩種不同層次的評(píng)分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
動(dòng)點(diǎn)與點(diǎn)的距離和它到直線的距離相等,記點(diǎn)的軌跡為曲線.圓
的圓心是曲線上的動(dòng)點(diǎn), 圓軸交于兩點(diǎn),且.
(1)求曲線的方程;
(2)設(shè)點(diǎn)2,若點(diǎn)到點(diǎn)的最短距離為,試判斷直線與圓的位置關(guān)系,
并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

過(guò)點(diǎn)(1,0)的直線與中心在原點(diǎn),焦點(diǎn)在x軸上且離心率為的橢圓C相交于A、B兩點(diǎn),直線y=x過(guò)線段AB的中點(diǎn),同時(shí)橢圓C上存在一點(diǎn)與其右焦點(diǎn)關(guān)于直線l對(duì)稱,試求直線l與橢圓C的方程  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

P(x,y)是曲線上任意一點(diǎn),則(x-2)2+(x+4)2的最大值是
A.36B.6C.26D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

動(dòng)點(diǎn)與點(diǎn)與點(diǎn)滿足,則點(diǎn)的軌跡方程為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)已知點(diǎn)M與兩個(gè)定點(diǎn)O(0,0),A(3,0)的距離的比為求點(diǎn)M的軌跡方程。

查看答案和解析>>

同步練習(xí)冊(cè)答案