(本題15分)已知曲線與曲線,設(shè)點(diǎn)是曲線上任意一點(diǎn),直線與曲線交于、兩點(diǎn).

(1)判斷直線與曲線的位置關(guān)系;

(2)以、兩點(diǎn)為切點(diǎn)分別作曲線的切線,設(shè)兩切線的交點(diǎn)為,求證:點(diǎn)到直線距離的乘積為定值.

 

【答案】

(1)直線與曲線相切

(2)設(shè)

切線AM:,即:

                          同理切線BM:

聯(lián)立①②得  即

設(shè)點(diǎn)M到直線、距離分別為

.

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年浙江卷)(本題15分)已知曲線是到點(diǎn)和到直線距離相等的點(diǎn)的軌跡.是過(guò)點(diǎn)的直線,上(不在上)的動(dòng)點(diǎn);上,軸(如圖).

(Ⅰ)求曲線的方程;

(Ⅱ)求出直線的方程,使得為常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

()(本題15分)已知曲線C是到點(diǎn)和到直線

距離相等的點(diǎn)的軌跡,l是過(guò)點(diǎn)Q(-1,0)的直線,

MC上(不在l上)的動(dòng)點(diǎn);A、Bl上,

軸(如圖)。

    (Ⅰ)求曲線C的方程;

(Ⅱ)求出直線l的方程,使得為常數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省高三上學(xué)期10月月考文科數(shù)學(xué)卷 題型:解答題

(本題15分)

已知拋物線,點(diǎn),點(diǎn)E是曲線C上的一個(gè)動(dòng)點(diǎn)(E不在直線AB上),設(shè),C,D在直線AB上,軸。

(1)用表示方向上的投影;

(2)是否為定值?若是,求此定值,若不是,說(shuō)明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題12分)

已知曲線在第一象限內(nèi)交點(diǎn)為P

(1)求過(guò)點(diǎn)P且與曲線相切的直線方程;

(2)求兩條曲線所圍圖形(如圖所示陰影部分)的面積S.

查看答案和解析>>

同步練習(xí)冊(cè)答案