()(本題15分)已知曲線C是到點(diǎn)和到直線

距離相等的點(diǎn)的軌跡,l是過點(diǎn)Q(-1,0)的直線,

MC上(不在l上)的動(dòng)點(diǎn);A、Bl上,

軸(如圖)。

    (Ⅰ)求曲線C的方程;

(Ⅱ)求出直線l的方程,使得為常數(shù)。

(Ⅰ) ,(Ⅱ)


解析:

本題主要考查求曲線軌跡方程,兩條直線的位置關(guān)系等基礎(chǔ)知識(shí),考查解析幾何的基本思想方法和綜合解題能力。滿分15分。

(I)設(shè)C上的點(diǎn),則

N到直線的距離為

由題設(shè)得

化簡(jiǎn),得曲線C的方程為

(II)解法一:

設(shè),直線l,則,從而

在Rt△QMA中,因?yàn)?nbsp;  

,  

所以 

,

當(dāng)k=2時(shí),

從而所求直線l方程為

解法二:

設(shè),直線直線l,則,從而

垂直于l的直線l1,

因?yàn)?img width=78 height=26 src="http://thumb.zyjl.cn/pic1/1899/sx/174/362174.gif">,所以

,

當(dāng)k=2時(shí),

從而所求直線l方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年浙江卷)(本題15分)已知曲線是到點(diǎn)和到直線距離相等的點(diǎn)的軌跡.是過點(diǎn)的直線,上(不在上)的動(dòng)點(diǎn);上,軸(如圖).

(Ⅰ)求曲線的方程;

(Ⅱ)求出直線的方程,使得為常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

()(本題15分)已知a是實(shí)數(shù),函數(shù).

    (Ⅰ)若f1(1)=3,求a的值及曲線在點(diǎn)處的切線

方程;

(Ⅱ)求在區(qū)間[0,2]上的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三第一學(xué)期期末考試文科數(shù)學(xué) 題型:解答題

(本題15分)已知曲線與曲線,設(shè)點(diǎn)是曲線上任意一點(diǎn),直線與曲線交于、兩點(diǎn).

(1)判斷直線與曲線的位置關(guān)系;

(2)以、兩點(diǎn)為切點(diǎn)分別作曲線的切線,設(shè)兩切線的交點(diǎn)為,求證:點(diǎn)到直線距離的乘積為定值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三上學(xué)期10月月考文科數(shù)學(xué)卷 題型:解答題

(本題15分)

已知拋物線,點(diǎn),點(diǎn)E是曲線C上的一個(gè)動(dòng)點(diǎn)(E不在直線AB上),設(shè),C,D在直線AB上,軸。

(1)用表示方向上的投影;

(2)是否為定值?若是,求此定值,若不是,說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省舟山市2010屆高三高考模擬試題 題型:解答題

(本題15分)已知函數(shù).

(I)若函數(shù)在點(diǎn)處的切線斜率為4,求實(shí)數(shù)的值;

(II)若函數(shù)在區(qū)間上存在零點(diǎn),求實(shí)數(shù)的取值。

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案