【題目】數(shù)列{an}滿足an+1+(-1)n an =2n-1,則{an}的前64項(xiàng)和為( )
A. 4290 B. 4160 C. 2145 D. 2080
【答案】D
【解析】分析:令a1=a,由遞推式,算出前幾項(xiàng),得到相鄰奇數(shù)項(xiàng)的和為2,偶數(shù)項(xiàng)中,每隔一項(xiàng)構(gòu)成公差為8的等差數(shù)列,由等差數(shù)列的求和公式計(jì)算即可得到所求值.
詳解:令a1=a,由,
可得a2=1+a,a3=2﹣a,a4=7﹣a,
a5=a,a6=9+a,a7=2﹣a,a8=15﹣a,
a9=a,a10=17+a,a11=2﹣a,a12=24﹣a,…
可得(a1+a3)+(a5+a7)+(a9+a11)+…+(a61+a63)
=2+2++2+…+2=2×16=32;
a2+a6+a10+…+a62=(1+a)+(9+a)+…+(121+a)
=16(1+a)+×16×15×8=976+16a;
a4+a8+a12+…+a64=(7﹣a)+(15﹣a)+…+(127﹣a)
=16(7﹣a)+×16×15×8=1072﹣16a;
即有前64項(xiàng)和為32+976+16a +1072﹣16a =2080.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AA1=AC=2BC,∠ACB=90°.
(Ⅰ)求證:AC1⊥A1B;
(Ⅱ)求直線AB與平面A1BC所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρcos(θ+ )=1.以極點(diǎn)O為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,圓C的參數(shù)方程為 (θ為參數(shù)).若直線l與圓C相切,求r的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次函數(shù).
(1)寫出該函數(shù)的頂點(diǎn)坐標(biāo);
(2)如果該函數(shù)在區(qū)間上的最小值為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合,且下列三個(gè)關(guān)系:,,中有且只有一個(gè)正確,則函數(shù)的值域是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)若不等式的解集為,求的取值范圍;
(2)當(dāng)時(shí),解不等式;
(3)若不等式的解集為,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于函數(shù)的判斷正確的是( )
①的解集是;②當(dāng)時(shí)有極小值,當(dāng)時(shí)有極大值;
③沒有最小值,也沒有最大值.
A. ①③ B. ①②③ C. ② D. ①②
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com