【題目】下列關(guān)于函數(shù)的判斷正確的是( )
①的解集是;②當(dāng)時有極小值,當(dāng)時有極大值;
③沒有最小值,也沒有最大值.
A. ①③ B. ①②③ C. ② D. ①②
【答案】D
【解析】分析:令f(x)>0可解x的范圍確定①正確;對函數(shù)f(x)進(jìn)行求導(dǎo),然后令f'(x)=0求出x,在根據(jù)f'(x)的正負(fù)判斷原函數(shù)的單調(diào)性進(jìn)而可確定②正確.根據(jù)函數(shù)的單調(diào)性可判斷極大值即是原函數(shù)的最大值,無最小值,③不正確.從而得到答案.
詳解:由f(x)>0(2x﹣x2)ex>02x﹣x2>00<x<2,故①正確;
f′(x)=ex(2﹣x2),由f′(x)=0得x=±,
由f′(x)<0得x>或x<﹣,
由f′(x)>0得﹣<x<,
∴f(x)的單調(diào)減區(qū)間為(﹣∞,﹣),(,+∞).單調(diào)增區(qū)間為(﹣,).
∴f(x)的極大值為f(),極小值為f(﹣),故②正確.
∵x<﹣時,f(x)<0恒成立.
∴f(x)無最小值,但有最大值f()
∴③不正確.
故答案為:D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足an+1+(-1)n an =2n-1,則{an}的前64項和為( )
A. 4290 B. 4160 C. 2145 D. 2080
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)a=2,求函數(shù)的極值;
(2)若函數(shù)有兩個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4x2-kx-8.
(1)若函數(shù)y=f(x)在區(qū)間[2,10]上單調(diào),求實數(shù)k的取值范圍;
(2)若y=f(x)在區(qū)間(-∞,2]上有最小值-12,求實數(shù)k的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中ABC﹣A1B1C1中,點A1在平面ABC內(nèi)的射影D為棱AC的中點,側(cè)面A1ACC1為邊長為2的菱形,AC⊥CB,BC=1.
(1)證明:AC1⊥平面A1BC;
(2)求三棱錐B﹣A1B1C的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若將函數(shù)f(x)=sin(2x+ )的圖象向右平移個單位長度,可以使f(x)成為奇函數(shù),則的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方形和內(nèi)接于同一個直角三角形ABC中,如圖所示,設(shè),若兩正方形面積分別為=441,=440,則=______
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于、兩點,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com