【題目】已知等差數(shù)列的首項,公差.且、、分別是等比數(shù)列的第2、3、4項.
(1)求數(shù)列與的通項公式;
(2)設(shè)數(shù)列滿足,求的值(結(jié)果保留指數(shù)形式).
【答案】(1) .;. .
(2).
【解析】分析:(1)由題意可得,即,解出即可得,進而得到;
(2)利用錯位相減法與等比數(shù)列的前n項和公式即可得出.
詳解:(1)由題意知等差數(shù)列中,且、、成等比,
,
即,又,解得
所以數(shù)列的通項公式為
.
再由題意得等比數(shù)列中,,,
設(shè)等比數(shù)列公比為,則,
數(shù)列的通項公式為.
()
(2)由(1)得,,,,
設(shè)數(shù)列的前項的和為,
.
..........① ..........②
①-②得
所以的值為.
(2)解法2:由(1)得,,,,
設(shè),數(shù)列的前項的和為,則
..........①
則..........②
①-②得
,則
故
(2)解法3:由(1)得,,,,
.
設(shè)數(shù)列的前項的和為,
所以的值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,在邊長為12的正方形AA'A1'A1中,BB1∥CC1∥AA1,且AB=3,BC=4,AA1'分別交BB1,CC1于點P,Q,將該正方形沿BB1、CC1折疊,使得A'A1'與AA1重合,構(gòu)成如圖2所示的三棱柱ABC﹣A1B1C1.
(1)求三棱錐P﹣ABC與三棱錐Q﹣PAC的體積之和;
(2)求直線AQ與平面BCC1B1所成角的正弦值;
(3)求三棱錐Q﹣ABC的外接球半徑r.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“”是“對任意的正數(shù), ”的( )
A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件
【答案】A
【解析】分析:根據(jù)基本不等式,我們可以判斷出“”?“對任意的正數(shù)x,2x+≥1”與“對任意的正數(shù)x,2x+≥1”?“a=
”真假,進而根據(jù)充要條件的定義,即可得到結(jié)論.
解答:解:當“a=”時,由基本不等式可得:
“對任意的正數(shù)x,2x+≥1”一定成立,
即“a=”?“對任意的正數(shù)x,2x+≥1”為真命題;
而“對任意的正數(shù)x,2x+≥1的”時,可得“a≥”
即“對任意的正數(shù)x,2x+≥1”?“a=”為假命題;
故“a=”是“對任意的正數(shù)x,2x+≥1的”充分不必要條件
故選A
【題型】單選題
【結(jié)束】
9
【題目】如圖是一幾何體的平面展開圖,其中為正方形, , 分別為, 的中點,在此幾何體中,給出下面四個結(jié)論:①直線與直線異面;②直線與直線異面;③直線平面;④平面平面.
其中一定正確的選項是( )
A. ①③ B. ②③ C. ②③④ D. ①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一臺風中心在港口南偏東方向上,距離港口千米處的海面上形成,并以每小時千米的速度向正北方向移動,距臺風中心千米以內(nèi)的范圍將受到臺風的影響,則港口受到臺風影響的時間為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列和等比數(shù)列滿足, , .
(1)求的通項公式;
(2)求和: .
【答案】(1);(2).
【解析】試題分析:(1)根據(jù)等差數(shù)列的, ,列出關(guān)于首項、公差的方程組,解方程組可得與的值,從而可得數(shù)列的通項公式;(2)利用已知條件根據(jù)題意列出關(guān)于首項 ,公比 的方程組,解得、的值,求出數(shù)列的通項公式,然后利用等比數(shù)列求和公式求解即可.
試題解析:(1)設(shè)等差數(shù)列{an}的公差為d. 因為a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)設(shè)等比數(shù)列的公比為q. 因為b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以.
從而.
【題型】解答題
【結(jié)束】
18
【題目】已知命題:實數(shù)滿足,其中;命題:方程表示雙曲線.
(1)若,且為真,求實數(shù)的取值范圍;
(2)若是的充分不必要條件,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為角A,B,C的對邊.若acosB=3,bcosA=l,且A﹣B=
(1)求邊c的長;
(2)求角B的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com