【題目】設等差數(shù)列{an}的公差d∈(0,1),且 =1,當n=8時,{an}的前n項和Sn取得最小值,則a1的取值范圍是 .
【答案】[﹣π,﹣ ]
【解析】解:∵{an}為等差數(shù)列,且 =1,
∴ =1,
即 =sin(a4+a8),
由和差化積公式得: ×(﹣2)sin(a4+a8)sin(a4﹣a8)=sin(a4+a8),
∵sin(a4+a8)≠0,
∴sin(a4﹣a8)=﹣1,即sin(a8﹣a4)=1,
∴4d=2kπ+ ∈(0,4),
取k=0,則4d= ,解得d= ;
又n=8時,數(shù)列{an}的前n項和Sn取得最小值,
∴ ,即 ,
解得﹣π≤a1≤﹣ .
所以答案是:[﹣π,﹣ ].
【考點精析】本題主要考查了等差數(shù)列的通項公式(及其變式)的相關知識點,需要掌握通項公式:或才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】設等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1.
(Ⅰ)求數(shù)列{an}的通項公式.
(Ⅱ)設數(shù)列{bn}的前n項和為Tn,且Tn+=λ(λ為常數(shù)),令cn=b2n(n∈N*).求數(shù)列{cn}的前n項和Rn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的左頂點為,右焦點為,過點且斜率為1的直線交橢圓于另一點,交軸于點, .
(1)求橢圓的方程;
(2)過點作直線與橢圓交于兩點,連接(為坐標原點)并延長交橢圓于點,求面積的最大值及取最大值時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系內,動點與兩定點, 連線的斜率之積為.
(1)求動點的軌跡的方程;
(2)設點, 是軌跡上相異的兩點.
(Ⅰ)過點, 分別作拋物線的切線, , 與兩條切線相交于點,證明: ;
(Ⅱ)若直線與直線的斜率之積為,證明: 為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列1,a1 , a2 , 9是等差數(shù)列,數(shù)列1,b1 , b2 , b3 , 9是等比數(shù)列,則 的值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在正四棱錐中, 分別是
的中點,動點在線段上運動時,下列結論中不恒成立的是( )
A. 與異面 B. ∥面
C. ⊥ D. ∥
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=2,點E、F分別在邊AB、DC上,M為AD的中點,且 =0,則△MEF的面積的取值范圍為( )
A.
B.[1,2]
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的焦點、在軸上,且橢圓經(jīng)過,過點的直線與交于點,與拋物線: 交于、兩點,當直線過時的周長為.
(Ⅰ)求的值和的方程;
(Ⅱ)以線段為直徑的圓是否經(jīng)過上一定點,若經(jīng)過一定點求出定點坐標,否則說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com