【題目】在平面直角坐標(biāo)系內(nèi),動點(diǎn)與兩定點(diǎn) 連線的斜率之積為.

(1)求動點(diǎn)的軌跡的方程;

(2)設(shè)點(diǎn), 是軌跡上相異的兩點(diǎn).

(Ⅰ)過點(diǎn) 分別作拋物線的切線, , 兩條切線相交于點(diǎn),證明: ;

(Ⅱ)若直線與直線的斜率之積為,證明: 為定值,并求出這個(gè)定值.

【答案】(1)(2)(Ⅰ)0(Ⅱ)1

【解析】試題分析:(1)直接有題意建立等式: 得出軌跡方程(2)要證明則證明即可,因?yàn)橛质乔芯,所以根據(jù) 得到方程,從而得證(3)要求三角形面積是定值首先明確其表達(dá)式, ,將其變量統(tǒng)一,最后化簡得出定值

試題解析:

(1)依題意:

(2)(Ⅰ)設(shè)直線的斜率為,設(shè)直線的斜率為,設(shè)切線為:

,

, .

(Ⅱ)由條件得:

, .

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè):實(shí)數(shù)滿足,其中; :實(shí)數(shù)滿足.

(1)若,且為真,求實(shí)數(shù)的取值范圍;

(2)若的必要不充分條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點(diǎn)且離心率為橢圓的中心在原點(diǎn),焦點(diǎn)在軸上.

(1)求橢圓的方程;

(2)設(shè)點(diǎn)橢圓的左準(zhǔn)線軸的交點(diǎn),過點(diǎn)的直線與橢圓相交于兩點(diǎn),記橢圓的左,右焦點(diǎn)分別為,上下兩個(gè)頂點(diǎn)分別為.當(dāng)線段的中點(diǎn)落在四邊形內(nèi)(包括邊界)時(shí),求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)的最小正周期;

(Ⅱ)若函數(shù)在區(qū)間上有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=x2+bx+c(b,c∈R)
(1)若f(x)的圖象與x軸有且僅有一個(gè)交點(diǎn),求b2+c2+2的取值范圍;
(2)在b≥0的條件下,若f(x)的定義域[﹣1,0],值域也是[﹣1,0],符合上述要求的函數(shù)f(x)是否存在?若存在,求出f(x)的表達(dá)式,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形中, 為正三角形, , , 中心點(diǎn),將沿邊折起,使點(diǎn)至點(diǎn),已知與平面所成的角為.

(1)求證:平面平面;

(2)求已知二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的公差d∈(0,1),且 =1,當(dāng)n=8時(shí),{an}的前n項(xiàng)和Sn取得最小值,則a1的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)是平行四邊形所在平面外一點(diǎn), 平面, ,, .

(1)求證:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甘肅省瓜州縣自古就以盛產(chǎn)“美瓜”而名揚(yáng)中外,生產(chǎn)的“瓜州蜜瓜”有4個(gè)系列30多個(gè)品種,質(zhì)脆汁多,香甜可口,清爽宜人,含糖量達(dá)14%-19%,是消暑止渴的佳品,有詩贊曰:冰泉浸綠玉,霸刀破黃金;涼冷消晚署,清甘洗渴心,調(diào)查表明,蜜瓜的甜度與海拔高度、日照時(shí)長、溫差有極強(qiáng)的相關(guān)性,分別用表示蜜瓜甜度與海拔高度、日照時(shí)長、溫差的相關(guān)程度,并對它們進(jìn)行量化:0表示一般,1表示良,2表示優(yōu),再用綜合指標(biāo)的值評定蜜瓜的等級,若,則為一級;若,則為二級;若,則為三級.近年來,周邊各省也開始發(fā)展蜜瓜種植,為了了解目前蜜瓜在周邊各省的種植情況,研究人員從不同省份隨機(jī)抽取了10塊蜜瓜種植地,得到如下結(jié)果:

(1)若有蜜瓜種植地110塊,試估計(jì)等級為一級的蜜瓜種植地的數(shù)量;

(2)在所取樣本的二級和三級蜜瓜種植地中任取2塊, 表示取到三級蜜瓜種植地的數(shù)量,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案