已知a,b,c分別是△ABC的三個內(nèi)角A,B,C的對邊,
2b-c
a
=
cosC
cosA

(1)求A的大。
(2)當(dāng)a=
3
時,求b2+c2的取值范圍.
分析:(1)已知等式利用正弦定理化簡,整理后求出cosA的值,即可確定出A得度數(shù);
(2)利用正弦定理列出關(guān)系式,表示出b與c,代入所求式子,整理后利用正弦函數(shù)的值域即可確定出范圍.
解答:解:(1)△ABC中,
2b-c
a
=
cosC
cosA
,由正弦定理變形得:
2sinB-sinC
sinA
=
cosC
cosA
,
即2sinBcosA=sinAcosC+sinCcosA,
整理得:2sinBcosA=sin(A+C)=sinB,
∵sinB≠0,∴cosA=
1
2

則A=
π
3
;
(2)由正弦定理及a=
3
,sinA=
3
2
a
sinA
=
b
sinB
=
c
sinC
=
3
3
2
=2,
得:b=2sinB,c=2sinC,
則b2+c2=4sin2B+4sin2C
=2(1-cos2B+1-cos2C)
=2[2-cos2B-cos2(120°-B)]
=2[2-cos2B-cos(240°-2B)]
=2(2-
1
2
cos2B+
3
2
sinB)
=4+2sin(2B-30°),
∵0<B<120°,即-30°<2B-30°<210°,
∴-
1
2
<sin(2B-30°)≤1,
則3<b2+c2≤6.
點評:此題考查了正弦定理,兩角和與差的正弦函數(shù)公式,正弦函數(shù)的定義域與值域,熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、c分別是△ABC三個內(nèi)角A、B、C的對邊.
(1)若b2=ac,求角B的范圍.
(2)若acosA=bcosB,試判斷△ABC的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別是△ABC的三個內(nèi)角A,B,C所對的邊,若a=1,b=
3
,A+C=2B,則sinC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、c分別是△ABC的三個內(nèi)角A、B、C所對的邊,若
cosB
cosC
=-
b
2a+c
,則B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別是△ABC中角A,B,C的對邊,且sin2A+sin2C-sin2B=sinAsinC.
 (1)求角B的大小;
 (2)若c=3a,求tanA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別是△ABC的三個內(nèi)角A,B,C的對邊,且滿足2asinB-
3
b=0.
(Ⅰ)求角A的大;
(Ⅱ)當(dāng)A為銳角時,求函數(shù)y=
3
sinB+sin(C-
π
6
)的最大值.

查看答案和解析>>

同步練習(xí)冊答案