18.若tan(180°-α)=-$\frac{4}{3}$,則tan(α+405°)等于( 。
A.$\frac{1}{7}$B.7C.-$\frac{1}{7}$D.-7

分析 由已知及誘導公式可求tanα的值,利用兩角和的正切函數(shù)公式,特殊角的三角函數(shù)值即可計算求值得解.

解答 解:∵tan(180°-α)=-$\frac{4}{3}$,
∴tanα=$\frac{4}{3}$,
∴tan(α+405°)=tan(α+45°)=$\frac{1+tanα}{1-tanα}$=-7.
故選:D.

點評 本題主要考查了誘導公式,兩角和的正切函數(shù)公式,特殊角的三角函數(shù)值在三角函數(shù)化簡求值中的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.已知點A(1,1),B(5,5),直線l1:x=0和l2:3x+2y-2=0,若點P1、P2分別是l1、l2上與A、B兩點距離的平方和最小的點,則|$\overrightarrow{{P}_{1}{P}_{2}}$|等于( 。
A.1B.2C.$\sqrt{10}$D.$\frac{\sqrt{173}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若log2(x+1)=3,則x=7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.某校高三(1)班共有48人,學號依次為1,2,3,…,48,現(xiàn)用系統(tǒng)抽樣的辦法抽取一個容量為6的樣本.已知學號為3,11,19,35,43的同學在樣本中,那么還有一個同學的學號應為( 。
A.27B.26C.25D.24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知數(shù)列an是公差不為零的等差數(shù)列,且a3=5,a2,a4,a12成等比數(shù)列.數(shù)列{bn}的每一項均為正實數(shù),其前n項和為Sn,且滿足4Sn=bn2+2bn-3(n∈N*) 
(I)數(shù)列{an},{bn}的通項公式
(Ⅱ)令cn=$\frac{1}{(2{a}_{n}+5)_{n}}$,記數(shù)列{cn}的前n項和為Tn,若$\frac{{T}_{n}}{{T}_{n+1}}$≥$\frac{{a}_{m}}{{a}_{m+1}}$ 對?n∈N* 恒成立,求正整數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知偶函數(shù)f(x)在(-∞,0]單調(diào)遞減,f(1)=0.若f(lgx)<0,則x的取值范圍是($\frac{1}{10}$,10).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)y=ex-$\frac{3}{a}$x存在平行于x軸的切線且切點在y軸左側(cè),則a的范圍為( 。
A.(-3,+∞)B.(-∞,-3)C.(3,+∞)D.(-∞,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.如果正數(shù)a,b滿足ab=a+2b+1,那么ab的取值范圍是[5+2$\sqrt{6}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在△ABC中,角A,B,C所對的邊分別為a,b,c,且b=2$\sqrt{2}$,a=2,若三角形有解,則角A的范圍是(  )
A.(0,$\frac{π}{6}$]B.(0,$\frac{π}{4}$]C.(0,$\frac{π}{3}$]D.(0,$\frac{π}{2}$]

查看答案和解析>>

同步練習冊答案