15.函數(shù)y=loga(x-1)+2(a>0且a≠1)恒過定點(2,2).

分析 根據(jù)對數(shù)函數(shù)的圖象恒過定點(1,0),求出該題的答案即可.

解答 解:當x-1=1,即x=2時,y=loga(x-1)+2=0+2=2,
∴函數(shù)y=loga(x-1)+2的圖象恒過定點(2,2).
故答案為:(2,2).

點評 本題考查了對數(shù)函數(shù)的圖象與性質的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)y=-2ax+b與函數(shù)y=ax2-2bx+c在同一坐標系內的圖象只可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知4張卡片上分別寫著數(shù)字1,2,3,4,甲、乙兩人等可能地從這四張卡片中選擇1張,則他們選擇同一卡片的概率為( 。
A.$\frac{1}{8}$B.$\frac{1}{16}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓C與雙曲線$\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{2}$=1有公共焦點,且離心率e=$\frac{3}{5}$,
(1)求橢圓的標準方程;
(2)已知點P是橢圓C上的一動點,過點P作x軸的垂線段PD,D為垂足,當點P在橢圓上運動時,線段PD的中點M的軌跡是什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知直線l1:3x+4y+1=0和點A(1,2),設過A點與l1垂直的直線為l2
(1)求直線l2的方程;
(2)求直線l2與兩坐標軸圍成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.函數(shù)y=ex+lnx在x=1處的切線的斜率等于e+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若直線y=ax+b是函數(shù)f(x)=lnx-$\frac{1}{x}$圖象的切線,則a+b的最小值為-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知f(x)=$\left\{\begin{array}{l}{log_a}x,x>1\\(a-2)x-1,x≤1\end{array}$在(-∞,+∞)上單調遞增,則a的取值范圍是( 。
A.(1,+∞)B.(2,+∞)C.(1,3]D.(2,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.如圖,游客從某旅游景區(qū)的景點A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50m/min.在甲出發(fā)2min 后,乙從A乘纜車到B,在B處停留1min后,再從B勻速步行到C.假設纜車勻速直線運行的速度為130m/min,山路AC長為1260m,經(jīng)測量,cos A=$\frac{12}{13}$,cos C=$\frac{3}{5}$.
(Ⅰ)求索道AB的長;
(Ⅱ)問:乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?
(Ⅲ)為使兩位游客在C處互相等待的時間不超過3分鐘,乙步行的速度應控制在什么范圍內?

查看答案和解析>>

同步練習冊答案