11.在極坐標(biāo)系中,過點(diǎn)(2$\sqrt{2}$,-$\frac{π}{4}}$)作圓ρ=4cosθ的切線,則切線的極坐標(biāo)方程是ρsinθ=-2.

分析 把點(diǎn)(2$\sqrt{2}$,-$\frac{π}{4}}$)及其圓ρ=4cosθ化為直角坐標(biāo)方程,求出切線方程,再化為極坐標(biāo)方程即可得出.

解答 解:過點(diǎn)(2$\sqrt{2}$,-$\frac{π}{4}}$),化為(2,-2).
圓ρ=4cosθ即ρ2=4ρcosθ,化為直角坐標(biāo)方程:x2+y2=4x,配方為:(x-2)2+y2=4,可得圓心C(2,0),半徑r=2.
可得圓的切線方程分別為:y=-2.
∴切線的極坐標(biāo)方程為:ρsinθ=-2.
故答案為:ρsinθ=-2.

點(diǎn)評 本題考查了極坐標(biāo)方程與直角坐標(biāo)方程的互化、圓的切線方程,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=|2x+1|+|2x-3|.
(I)若?x0∈R,使得不等式f(x0)≤m成立,求實(shí)數(shù)m的最小值M
(Ⅱ)在(I)的條件下,若正數(shù)a,b滿足3a+b=M,證明:$\frac{3}$+$\frac{1}{a}$≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}的前n項(xiàng)和為Sn,Sn=2an-$\frac{1}{2}$(n∈N*),數(shù)列{bn}滿足b1=l,點(diǎn)P(bn,bn+1)在直線x-y+2=0上.
(1)求數(shù)列{an},{bn}的通項(xiàng)an和bn
(2)令cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn;
(3)若λ>0,求對所有的正整數(shù)n都有2λ2-kλ+2>$\frac{_{n}}{{a}_{2n}}$成立的k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求下列各式中x的值:
(1)log64x=-$\frac{2}{3}$;
(2)logx8=6;
(3)1g100=x;
(4)-lne2=x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=(α+2cos2x)cos(2x+θ)為奇函數(shù),且f($\frac{π}{4}$)=0,其中α∈R,θ∈(0,π),求α,θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.三棱錐P-ABC中,PA⊥平面ABC,PA=3,AC=4,PB=PC=BC.
(1)求二面角P-BC-A的大小
(2)求二面角A-PC-B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ex-a(x-1)(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若m,n,p滿足|m-p|<|n-p|恒成立,則稱m比n更靠近p.在函數(shù)f(x)有極值的前提下,當(dāng)x≥1時,$\frac{e}{x}$比ex-1+a更靠近lnx,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,△ABC是⊙O的內(nèi)接三角形,BT是⊙O的切線,P是線段AB上一點(diǎn),過P作BC的平行直線與BT交于E點(diǎn),與AC交于F點(diǎn).
(Ⅰ)求證:PE•PF=PA•PB;
(Ⅱ)若AB=4$\sqrt{2}$,cos∠EBA=$\frac{1}{3}$,求⊙O的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα+1}\\{y=2sinα}{\;}\end{array}\right.$(α為參數(shù)).以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4sinθ.
(Ⅰ)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(Ⅱ)求曲線C1和C2公共弦的長度.

查看答案和解析>>

同步練習(xí)冊答案