【題目】某景區(qū)擬將一半徑為的半圓形綠地改建為等腰梯形(如圖,其中為圓心,點(diǎn)在半圓上)的放養(yǎng)觀賞魚的魚池,周圍四邊建成觀魚長廊(寬度忽略不計(jì)).設(shè),魚池面積為(單位:).
(1)求S關(guān)于的函數(shù)表達(dá)式,并求魚池面積何時(shí)最大;
(2)已知魚池造價(jià)為每平方米2000元,長廊造價(jià)為每米3000元,問此次改建的最高造價(jià)不超過多少?(取計(jì)算)
【答案】(1),;時(shí),(2)27000000
【解析】
(1)結(jié)合三角函數(shù)的基本概念,表示出等腰梯形的上底下底和高,結(jié)合和面積公式和導(dǎo)數(shù)即可求解
(2)作,求出,則 ,表示等腰梯形周長為
,進(jìn)而表示出總造價(jià)公式,利用導(dǎo)數(shù)研究函數(shù)增減性,進(jìn)而求解
如圖,,,則等腰梯形面積為
,代入數(shù)據(jù)可得:,
,當(dāng)時(shí),,,時(shí),,,故當(dāng)時(shí),函數(shù)取到最大值,
(2)作,得,,等腰梯形周長為:
,結(jié)合(1)中面積,可得總造價(jià)
化簡得:
由(1)知在時(shí)單調(diào)遞增,時(shí)單調(diào)遞減,令
則,令,,當(dāng)時(shí),,時(shí),,故得出與在上增減性相同,所以在單增,時(shí)單減,在時(shí)取到最大值:
故總造價(jià)不超過27000000元
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】鳳鳴山中學(xué)的高中女生體重 (單位:kg)與身高(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(),用最小二乘法近似得到回歸直線方程為,則下列結(jié)論中不正確的是( )
A.與具有正線性相關(guān)關(guān)系
B.回歸直線過樣本的中心點(diǎn)
C.若該中學(xué)某高中女生身高增加1cm,則其體重約增加0.85kg
D.若該中學(xué)某高中女生身高為160cm,則可斷定其體重必為50.29kg.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線:,(t為參數(shù)),曲線:,(為參數(shù)).
(1)以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系;當(dāng)時(shí),求與的交點(diǎn)的極坐標(biāo)(其中極徑,極角);
(2)過坐標(biāo)原點(diǎn)O作的垂線,垂足為A,P為OA中點(diǎn),當(dāng)變化時(shí),求P點(diǎn)軌跡的參數(shù)方程,并指出它是什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天氣預(yù)報(bào)說,在今后的三天中,每一天下雨的概率為,用隨機(jī)模擬的方法估計(jì)這三天中恰有兩天下雨的概率.可利用計(jì)算機(jī)產(chǎn)生0到9之間的整數(shù)值的隨機(jī)數(shù),如果我們用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,順次產(chǎn)生的隨機(jī)數(shù)如下:
90 79 66 19 19 25 27 19 32 81 24 58 56 96 83
43 12 57 39 30 27 55 64 88 73 01 13 13 79 89
,這三天中恰有兩天下雨的概率約為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:與直線相交于,兩點(diǎn),為拋物線的焦點(diǎn),若,則的中點(diǎn)的橫坐標(biāo)為( )
A. B. 3C. 5D. 6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著科學(xué)技術(shù)的飛速發(fā)展,網(wǎng)絡(luò)也已經(jīng)逐漸融入了人們的日常生活,網(wǎng)購作為一種新的消費(fèi)方式,因其具有快捷、商品種類齊全、性價(jià)比高等優(yōu)勢而深受廣大消費(fèi)者認(rèn)可.某網(wǎng)購公司統(tǒng)計(jì)了近五年在本公司網(wǎng)購的人數(shù),得到如下的相關(guān)數(shù)據(jù)(其中“x=1”表示2015年,“x=2”表示2016年,依次類推;y表示人數(shù)):
x | 1 | 2 | 3 | 4 | 5 |
y(萬人) | 20 | 50 | 100 | 150 | 180 |
(1)試根據(jù)表中的數(shù)據(jù),求出y關(guān)于x的線性回歸方程,并預(yù)測到哪一年該公司的網(wǎng)購人數(shù)能超過300萬人;
(2)該公司為了吸引網(wǎng)購者,特別推出“玩網(wǎng)絡(luò)游戲,送免費(fèi)購物券”活動,網(wǎng)購者可根據(jù)拋擲骰子的結(jié)果,操控微型遙控車在方格圖上行進(jìn). 若遙控車最終停在“勝利大本營”,則網(wǎng)購者可獲得免費(fèi)購物券500元;若遙控車最終停在“失敗大本營”,則網(wǎng)購者可獲得免費(fèi)購物券200元. 已知骰子出現(xiàn)奇數(shù)與偶數(shù)的概率都是,方格圖上標(biāo)有第0格、第1格、第2格、…、第20格。遙控車開始在第0格,網(wǎng)購者每拋擲一次骰子,遙控車向前移動一次.若擲出奇數(shù),遙控車向前移動一格(從到)若擲出偶數(shù)遙控車向前移動兩格(從到),直到遙控車移到第19格勝利大本營)或第20格(失敗大本營)時(shí),游戲結(jié)束。設(shè)遙控車移到第格的概率為,試證明是等比數(shù)列,并求網(wǎng)購者參與游戲一次獲得免費(fèi)購物券金額的期望值.
附:在線性回歸方程中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每年3月20日是國際幸福日,某電視臺隨機(jī)調(diào)查某一社區(qū)人們的幸福度.現(xiàn)從該社區(qū)群中隨機(jī)抽取18名,用“10分制”記錄了他們的幸福度指數(shù),結(jié)果見如圖所示莖葉圖,其中以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉.若幸福度不低于8.5分,則稱該人的幸福度為“很幸!保
(Ⅰ)求從這18人中隨機(jī)選取3人,至少有1人是“很幸!钡母怕;
(Ⅱ)以這18人的樣本數(shù)據(jù)來估計(jì)整個(gè)社區(qū)的總體數(shù)據(jù),若從該社區(qū)(人數(shù)很多)任選3人,記表示抽到“很幸!钡娜藬(shù),求的分布列及.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
甲、乙、丙三名射擊運(yùn)動員射中目標(biāo)的概率分別為,三人各射擊一次,擊中目標(biāo)的次數(shù)記為.
(1)求的分布列及數(shù)學(xué)期望;
(2)在概率(=0,1,2,3)中, 若的值最大, 求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,平面平面,.
(1)證明:平面平面;
(2)若,為棱的中點(diǎn),,,求四面體的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com