【題目】已知圓
(1)求過點(diǎn)的圓的切線方程;
(2)點(diǎn)為圓上任意一點(diǎn),求的最值.
【答案】(1) 和 (2)的最大值為;的最小值為
【解析】
(1)本題首先可以確定圓的圓心以及半徑,然后根據(jù)題意分為直線斜率存在以及不存在兩種情況,最后根據(jù)圓心到切線距離等于半徑即可列出算式并得出結(jié)果;
(2)本題首先可明確為原點(diǎn)到圓上一點(diǎn)的直線的斜率,然后結(jié)合圖像得出當(dāng)圓與直線相切時(shí)斜率取最值,最后根據(jù)圓心到切線距離等于半徑即可得出結(jié)果.
(1)因?yàn)閳A的方程為,即,
所以圓心為,半徑為,
①當(dāng)切線斜率不存在時(shí),
因?yàn)橹本過點(diǎn),所以直線方程為,即
圓心到直線距離,所以直線是圓的切線,
②當(dāng)切線斜率存在時(shí),設(shè)切線斜率為,
則切線方程為,即
因?yàn)閳A心到切線距離等于半徑,
所以,解得,此時(shí)切線方程為,
綜上所述,過點(diǎn)的圓的切線方程為和.
(2)因?yàn)?/span>即,為圓上任意一點(diǎn),
所以即原點(diǎn)到圓上一點(diǎn)的直線的斜率,
令,則原點(diǎn)到圓上一點(diǎn)的直線的方程為,即
如圖所示,當(dāng)圓與直線相切時(shí),斜率取最值,
則有圓心到切線距離等于半徑,即,解得或,
所以斜率的最大值,斜率的最小,
所以的最大值為;的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(多選)下列命題中為真命題的是( )
A.若事件與事件互為對(duì)立事件,則事件與事件為互斥事件
B.若事件與事件為互斥事件,則事件與事件互為對(duì)立事件
C.若事件與事件互為對(duì)立事件,則事件為必然事件
D.若事件為必然事件,則事件與事件為互斥事件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】今年消毒液和口罩成了搶手年貨,老百姓幾乎人人都需要,但對(duì)于這種口罩,大多數(shù)人不是很了解.現(xiàn)隨機(jī)抽取40人進(jìn)行調(diào)查,其中45歲以下的有20人,在接受調(diào)查的40人中,對(duì)于這種口罩了解的占,其中45歲以上(含45歲)的人數(shù)占.
(1)將答題卡上的列聯(lián)表補(bǔ)充完整;
(2)判斷是否有的把握認(rèn)為對(duì)這種口罩的了解與否與年齡有關(guān).
參考公式:,其中.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知以點(diǎn)為圓心的及其上一點(diǎn).
(1)設(shè)圓與軸相切,與圓外切,且圓心在直線上,求圓的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于的直線與圓相交于兩點(diǎn),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從高一年級(jí)的一次月考成績中隨機(jī)抽取了 50名學(xué)生的成績(滿分100分,且抽取的學(xué)生成績都在內(nèi)),按成績分為,,,,五組,得到如圖所示的頻率分布直方圖.
(1)用分層抽樣的方法從月考成績?cè)?/span>內(nèi)的學(xué)生中抽取6人,求分別抽取月考成績?cè)?/span>和內(nèi)的學(xué)生多少人;
(2)在(1)的前提下,從這6名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行調(diào)查,求月考成績?cè)?/span>內(nèi)至少有1名學(xué)生被抽到的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在意大利,有一座滿是“斗笠”的灰白小鎮(zhèn)阿爾貝羅貝洛(Alberobello),這些圓錐形屋頂?shù)钠嫣匦∥菝?/span>Trullo,于1996年被收入世界文化遺產(chǎn)名錄(如圖1).現(xiàn)測量一個(gè)屋頂,得到圓錐SO的底面直徑AB長為12m,母線SA長為18m(如圖2).C,D是母線SA的兩個(gè)三等分點(diǎn)(點(diǎn)D靠近點(diǎn)A),E是母線SB的中點(diǎn).
(1)從點(diǎn)A到點(diǎn)C繞屋頂側(cè)面一周安裝燈光帶,求燈光帶的最小長度;
(2)現(xiàn)對(duì)屋頂進(jìn)行加固,在底面直徑AB上某一點(diǎn)P,向點(diǎn)D和點(diǎn)E分別引直線型鋼管PD和PE.試確定點(diǎn)P的位置,使得鋼管總長度最小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著資本市場的強(qiáng)勢(shì)進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了200人進(jìn)行抽樣分析,得到下表(單位:人):
經(jīng)常使用 | 偶爾或不用 | 合計(jì) | |
30歲及以下 | 70 | 30 | 100 |
30歲以上 | 60 | 40 | 100 |
合計(jì) | 130 | 70 | 200 |
(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?
(2)現(xiàn)從所有抽取的30歲以上的網(wǎng)民中利用分層抽樣抽取5人,
求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);
從這5人中,在隨機(jī)選出2人贈(zèng)送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.
參考公式: ,其中.
() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時(shí),討論的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一盒中裝有12個(gè)球,其中5個(gè)紅球,4個(gè)黑球,2個(gè)白球,1個(gè)綠球.從中隨機(jī)取出1球,求:
(1)取出1球是紅球或黑球的概率;
(2)取出1球是紅球或黑球或白球的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com