【題目】設(shè)A是圓O:x2+y2=16上的任意一點(diǎn),l是過點(diǎn)A且與x軸垂直的直線,B是直線l與x軸的交點(diǎn),點(diǎn)Q在直線l上,且滿足4|BQ|=3|BA|.當(dāng)點(diǎn)A在圓O上運(yùn)動時(shí),記點(diǎn)Q的軌跡為曲線C.
(1)求曲線C的方程;
(2)已知直線y=kx﹣2(k≠0)與曲線C交于M,N兩點(diǎn),點(diǎn)M關(guān)于y軸的對稱點(diǎn)為M′,設(shè)P(0,﹣2),證明:直線M′N過定點(diǎn),并求△PM′N面積的最大值.
【答案】(1)1(2)證明見解析,△PM′N面積的最大值為
【解析】
(1)點(diǎn)在圓上運(yùn)動,引起點(diǎn)的運(yùn)動,我們可以由,得到點(diǎn)和點(diǎn)坐標(biāo)之間的關(guān)系式,并由點(diǎn)的坐標(biāo)滿足圓的方程得到點(diǎn)坐標(biāo)所滿足的方程;
(2)設(shè),,,,則,,聯(lián)立,得,利用直線的斜率,求直線的方程,即可直線過定點(diǎn),并求出面積的最大值.
解:(1)設(shè),,,,在直線上,
,.①
點(diǎn)在圓上運(yùn)動,.②
將①式代入②式即得曲線的方程為.
證明:(2)設(shè),,,,則,,
聯(lián)立,得,
,.
直線的斜率,
直線的方程為.
令,得,
直線過定點(diǎn).
面積,
當(dāng)且僅當(dāng),即時(shí)取等號,
面積的最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;
(2)若與交于兩點(diǎn),點(diǎn)的極坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】實(shí)數(shù)a,b滿足ab>0且a≠b,由a、b、、按一定順序構(gòu)成的數(shù)列( )
A. 可能是等差數(shù)列,也可能是等比數(shù)列
B. 可能是等差數(shù)列,但不可能是等比數(shù)列
C. 不可能是等差數(shù)列,但可能是等比數(shù)列
D. 不可能是等差數(shù)列,也不可能是等比數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)經(jīng)銷鮮花產(chǎn)品的微店,為保障售出的百合花品質(zhì),每天從云南鮮花基地空運(yùn)固定數(shù)量的百合花,如有剩余則免費(fèi)分贈給第二天購花顧客,如果不足,則從本地鮮花供應(yīng)商處進(jìn)貨.今年四月前10天,微店百合花的售價(jià)為每支2元,云南空運(yùn)來的百合花每支進(jìn)價(jià)1.6元,本地供應(yīng)商處百合花每支進(jìn)價(jià)1.8元,微店這10天的訂單中百合花的需求量(單位:支)依次為:251,255,231,243,263,241,265,255,244,252.
(Ⅰ)求今年四月前10天訂單中百合花需求量的平均數(shù)和眾數(shù),并完成頻率分布直方圖;
(Ⅱ)預(yù)計(jì)四月的后20天,訂單中百合花需求量的頻率分布與四月前10天相同,請根據(jù)(Ⅰ)中頻率分布直方圖(同一組中的需求量數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表,位于各區(qū)間的頻率代替位于該區(qū)間的概率):
(1)寫出四月后20天每天百合花需求量的分布列;
(2)若百合花進(jìn)貨價(jià)格與售價(jià)均不變,微店從四月十一日起,每天從云南固定空運(yùn)支百合花,當(dāng)為多少時(shí),四月后20天每天百合花銷售利潤(單位:元)的期望值最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐P﹣ABC中,AB=1,BC=2,AC,PC,PA,PB,E是線段BC的中點(diǎn).
(1)求點(diǎn)C到平面APE的距離d;
(2)求二面角P﹣EA﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的奇函數(shù)在上單調(diào)遞減,且,,,則的值( 。
A. 恒為正B. 恒為負(fù)C. 恒為0D. 無法確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某超市一年中各月份的收入與支出單位:萬元情況的條形統(tǒng)計(jì)圖已知利潤為收入與支出的差,即利潤收入一支出,則下列說法正確的是
A. 利潤最高的月份是2月份,且2月份的利潤為40萬元
B. 利潤最低的月份是5月份,且5月份的利潤為10萬元
C. 收入最少的月份的利潤也最少
D. 收入最少的月份的支出也最少
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每當(dāng)《我心永恒》這首感人唯美的歌曲回蕩在我們耳邊時(shí),便會想起電影《泰坦尼克號》中一暮暮感人畫面,讓我們明白了什么是人類的“真、善、美”.為了推動我市旅游發(fā)展和帶動全市經(jīng)濟(jì),更為了向外界傳遞遂寧人民的“真、善、美”.我市某地將按“泰坦尼克號”原型比例重新修建.為了了解該旅游開發(fā)在大眾中的熟知度,隨機(jī)從本市歲的人群中抽取了人,得到各年齡段人數(shù)的頻率分布直方圖如圖所示,現(xiàn)讓他們回答問題“該旅游開發(fā)將在我市哪個(gè)地方建成?”,統(tǒng)計(jì)結(jié)果如下表所示:
組號 | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù) 占本組的頻率 |
第組 | |||
第組 | |||
第組 | |||
第組 | |||
第組 |
(1)求出的值;
(2)從第組回答正確的人中用分層抽樣的方法抽取人,求第組每組抽取的人數(shù);
(3)在(2)中抽取的人中隨機(jī)抽取人,求所抽取的人中恰好沒有年齡在段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了讓稅收政策更好的為社會發(fā)展服務(wù),國家在修訂《中華人民共和國個(gè)人所得稅法》之后,發(fā)布了《個(gè)人所得稅專項(xiàng)附加扣除暫行辦法》,明確“專項(xiàng)附加扣除”就是子女教育、繼續(xù)教育大病醫(yī)療、住房貸款利息、住房租金贈養(yǎng)老人等費(fèi)用,并公布了相應(yīng)的定額扣除標(biāo)準(zhǔn),決定自2019年1月1日起施行,某機(jī)關(guān)為了調(diào)查內(nèi)部職員對新個(gè)稅方案的滿意程度與年齡的關(guān)系,通過問卷調(diào)查,整理數(shù)據(jù)得如下2×2列聯(lián)表:
40歲及以下 | 40歲以上 | 合計(jì) | |
基本滿意 | 15 | 30 | 45 |
很滿意 | 25 | 10 | 35 |
合計(jì) | 40 | 40 | 80 |
(1)根據(jù)列聯(lián)表,能否有99%的把握認(rèn)為滿意程度與年齡有關(guān)?
(2)為了幫助年齡在40歲以下的未購房的8名員工解決實(shí)際困難,該企業(yè)擬員工貢獻(xiàn)積分(單位:分)給予相應(yīng)的住房補(bǔ)貼(單位:元),現(xiàn)有兩種補(bǔ)貼方案,方案甲:;方案乙:.已知這8名員工的貢獻(xiàn)積分為2分,3分,6分,7分,7分,11分,12分,12分,將采用方案甲比采用方案乙獲得更多補(bǔ)貼的員工記為“類員工”.為了解員工對補(bǔ)貼方案的認(rèn)可度,現(xiàn)從這8名員工中隨機(jī)抽取4名進(jìn)行面談,求恰好抽到3名“類員工”的概率。
附:,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com