【題目】棉花的纖維長度是棉花質(zhì)量的重要指標(biāo).在一批棉花中抽測了60根棉花的纖維長度(單位:),將樣本數(shù)據(jù)制作成如下的頻率分布直方圖:

下列關(guān)于這批棉花質(zhì)量狀況的分析不正確的是(

A.纖維長度在的棉花的數(shù)量為9

B.從這60根棉花中隨機(jī)選取1根,其纖維長度在的概率為0.335

C.有超過一半的棉花纖維長度能達(dá)到以上

D.這批棉花的纖維長度的中位數(shù)的估計值為.

【答案】D

【解析】

根據(jù)頻率分布直方圖可以得出每個區(qū)間內(nèi)的頻率,頻數(shù)等,結(jié)合選項可得.

由圖可知纖維長度在內(nèi)的頻數(shù)為:,所以A正確;

纖維長度在內(nèi)的頻率為:,所以B正確;

棉花纖維長度能達(dá)到以上的頻率為:,所以C正確;

這批棉花的纖維長度的中位數(shù)的估計值為:,所以D不正確.

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)為了調(diào)查高粱的高度、粒的顏色與產(chǎn)量的關(guān)系,對700棵高粱進(jìn)行抽樣調(diào)查,得到高度頻數(shù)分布表如下:

1:紅粒高粱頻數(shù)分布表

農(nóng)作物高度(

頻數(shù)

2

5

14

13

4

2

2:白粒高粱頻數(shù)分布表

農(nóng)作物高度(

頻數(shù)

1

7

12

6

3

1

1)估計這700棵高粱中紅粒高粱的棵數(shù);畫出這700棵高粱中紅粒高粱的頻率分布直方圖;

2)①估計這700棵高粱中高粱高(cm)在的概率;②在紅粒高粱中,從高度(單位:cm)在中任選3棵,設(shè)表示所選3棵中高(單位:cm)在的棵數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,動點(diǎn)滿足直線與直線的斜率之積為,設(shè)點(diǎn)的軌跡為曲線.

1)求曲線的方程;

2)若過點(diǎn)的直線與曲線交于,兩點(diǎn),過點(diǎn)且與直線垂直的直線與相交于點(diǎn),求的最小值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中為正實(shí)數(shù).

(1)若不等式恒成立,求實(shí)數(shù)的取值范圍;

(2)當(dāng)時,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平行四邊形中,,,,以對角線為折痕把折起,使點(diǎn)到圖2所示點(diǎn)的位置,使得.

(Ⅰ)求證:平面平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)分別求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線交曲線兩點(diǎn),交曲線兩點(diǎn),求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知王明比較喜愛打籃球,近來,他為了提高自己的投籃水平,制定了一個夏季訓(xùn)練計劃.班主任為了了解其訓(xùn)練效果,開始訓(xùn)練前,統(tǒng)計了王明場比賽的得分,計算出得分?jǐn)?shù)據(jù)的中位數(shù)為分,平均得分為分,得分?jǐn)?shù)據(jù)的方差為,訓(xùn)練結(jié)束后統(tǒng)計了場比賽得分成績莖葉圖如下圖:

1)求王明訓(xùn)練結(jié)束后統(tǒng)計的場比賽得分的中位數(shù),平均得分以及方差;

2)若只從訓(xùn)練前后統(tǒng)計的各場比賽得分?jǐn)?shù)據(jù)分析,訓(xùn)練計劃對王明投籃水平的提高是否有幫助?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)u(x)=xlnx,v(x)x﹣1,m∈R.

(1)令m=2,求函數(shù)h(x)的單調(diào)區(qū)間;

(2)令f(x)=u(x)﹣v(x),若函數(shù)f(x)恰有兩個極值點(diǎn)x1,x2,且滿足1e(e為自然對數(shù)的底數(shù))求x1x2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)當(dāng)時,恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案