【題目】已知王明比較喜愛打籃球,近來,他為了提高自己的投籃水平,制定了一個夏季訓練計劃.班主任為了了解其訓練效果,開始訓練前,統(tǒng)計了王明場比賽的得分,計算出得分數(shù)據(jù)的中位數(shù)為分,平均得分為分,得分數(shù)據(jù)的方差為,訓練結(jié)束后統(tǒng)計了場比賽得分成績莖葉圖如下圖:
(1)求王明訓練結(jié)束后統(tǒng)計的場比賽得分的中位數(shù),平均得分以及方差;
(2)若只從訓練前后統(tǒng)計的各場比賽得分數(shù)據(jù)分析,訓練計劃對王明投籃水平的提高是否有幫助?
【答案】(1)中位數(shù)為分,平均得分為分,方差為;(2)訓練計劃對王明投籃水平的提高有幫助.
【解析】
(1)由莖葉圖能計算該籃球運動員執(zhí)行訓練后統(tǒng)計的場比賽得分的中位數(shù)、平均得分與方差;
(2)根據(jù)訓練前后的平均數(shù)、方差的對比可得出結(jié)論.
(1)訓練后得分數(shù)據(jù)得中位數(shù)為分,平均得分為分,
方差為;
(2)據(jù)題設(shè)分析知,盡管訓練后,中位數(shù)與訓練前一樣,但平均得分提高了,訓練方差小于訓練前方差,這說明訓練后得分穩(wěn)定性提高了,這是投籃水平提高的表現(xiàn),故此訓練計劃對王明投籃水平的提高有幫助.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,離心率為,為橢圓上一動點(異于左右頂點),面積的最大值為.
(1)求橢圓的方程;
(2)若直線與橢圓相交于點兩點,問軸上是否存在點,使得是以為直角頂點的等腰直角三角形?若存在,求點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】政府為了對過熱的房地產(chǎn)市場進行調(diào)控決策,統(tǒng)計部門對城市人和農(nóng)村人進行了買房的心理預期調(diào)研,用簡單隨機抽樣的方法抽取110人進行統(tǒng)計,得到如圖列聯(lián)表,已知樣本中城市人數(shù)與農(nóng)村人數(shù)之比是;
(Ⅰ)分別求樣本中城市人中的不買房人數(shù)和農(nóng)村人中的糾結(jié)人數(shù);
(Ⅱ)請完成列聯(lián)表,并用獨立性檢驗的思想方法說明有多少的把握認為不買房心理預期與城鄉(xiāng)有關(guān)?
參考公式:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】棉花的纖維長度是棉花質(zhì)量的重要指標.在一批棉花中抽測了60根棉花的纖維長度(單位:),將樣本數(shù)據(jù)制作成如下的頻率分布直方圖:
下列關(guān)于這批棉花質(zhì)量狀況的分析不正確的是( )
A.纖維長度在的棉花的數(shù)量為9根
B.從這60根棉花中隨機選取1根,其纖維長度在的概率為0.335
C.有超過一半的棉花纖維長度能達到以上
D.這批棉花的纖維長度的中位數(shù)的估計值為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一款擊鼓小游戲的規(guī)則如下:每盤游戲都需擊鼓三次,每次擊鼓后要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)三次音樂獲得150分,出現(xiàn)兩次音樂獲得100分,出現(xiàn)一次音樂獲得50分,沒有出現(xiàn)音樂則獲得-300分.設(shè)每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓出現(xiàn)音樂相互獨立.
(1)若一盤游戲中僅出現(xiàn)一次音樂的概率為,求的最大值點;
(2)以(1)中確定的作為的值,玩3盤游戲,出現(xiàn)音樂的盤數(shù)為隨機變量,求每盤游戲出現(xiàn)音樂的概率,及隨機變量的期望;
(3)玩過這款游戲的許多人都發(fā)現(xiàn),若干盤游戲后,與最初的分數(shù)相比,分數(shù)沒有增加反而減少了.請運用概率統(tǒng)計的相關(guān)知識分析分數(shù)減少的原因.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),給出下列四個命題:
①的最小正周期為
②的圖象關(guān)于直線對稱
③在區(qū)間上單調(diào)遞增
④的值域為
⑤在區(qū)間上有6個零點
其中所有正確的編號是( )
A.②④B.①④⑤C.③④D.②③⑤
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的右焦點為,短軸長為2,過定點的直線交橢圓于不同的兩點、(點在點,之間).
(1)求橢圓的方程;
(2)若,求實數(shù)的取值范圍;
(3)若射線交橢圓于點(為原點),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】公元2020年春,我國湖北武漢出現(xiàn)了新型冠狀病毒,人感染后會出現(xiàn)發(fā)熱、咳嗽、氣促和呼吸困難等,嚴重的可導致肺炎甚至危及生命.為了盡快遏制住病毒的傳播,我國科研人員,在研究新型冠狀病毒某種疫苗的過程中,利用小白鼠進行科學試驗.為了研究小白鼠連續(xù)接種疫苗后出現(xiàn)癥狀的情況,決定對小白鼠進行做接種試驗.該試驗的設(shè)計為:①對參加試驗的每只小白鼠每天接種一次;②連續(xù)接種三天為一個接種周期;③試驗共進行3個周期.已知每只小白鼠接種后當天出現(xiàn)癥狀的概率均為,假設(shè)每次接種后當天是否出現(xiàn)癥狀與上次接種無關(guān).
(1)若某只小白鼠出現(xiàn)癥狀即對其終止試驗,求一只小白鼠至多能參加一個接種周期試驗的概率;
(2)若某只小白鼠在一個接種周期內(nèi)出現(xiàn)2次或3次癥狀,則在這個接種周期結(jié)束后,對其終止試驗.設(shè)一只小白鼠參加的接種周期為,求的分布列及數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com