分析 畫(huà)出約束條件表示的可行域,確定目標(biāo)函數(shù)經(jīng)過(guò)的位置,求出最大值即可.
解答 解:P(x,y)在不等式組$\left\{\begin{array}{l}{x-y≥0}\\{x+y≥0}\\{x-2≤0}\end{array}\right.$表示的平面區(qū)域內(nèi),如圖:
所以z=2x+y的經(jīng)過(guò)A即$\left\{\begin{array}{l}{x-y=0}\\{x-2=0}\end{array}\right.$的交點(diǎn)(2,2)時(shí)取得最大值:2×2+2=6.
故答案為:6.
點(diǎn)評(píng) 本題考查線(xiàn)性規(guī)劃的應(yīng)用,正確畫(huà)出可行域以及判斷目標(biāo)函數(shù)經(jīng)過(guò)的特殊點(diǎn)是解題的關(guān)鍵,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?p:?x∈R,sinx≤1 | B. | ?p:?x∈R,sinx≤1 | C. | ?p:?x∈R,sinx≤1 | D. | ?p:?x∈R,sinx>1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{81}{22}$ | B. | $\frac{1}{3}$ | C. | 5 | D. | .4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2n-1 | B. | ${(\frac{1}{2})^{n-1}}$ | C. | ${(\frac{2}{3})^{n-1}}$ | D. | ${(\frac{3}{2})^{n-1}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com