精英家教網 > 高中數學 > 題目詳情

已知函數
(1)當,時,試用含的式子表示,并討論的單調區(qū)間;
(2)若有零點,,且對函數定義域內一切滿足的實數
①求的表達式;
②當時,求函數的圖像與函數的圖像的交點坐標.

(1)時,的單調增區(qū)間是,,單調減區(qū)間是時,的單調增區(qū)間,單調減區(qū)間為
(2)①;②.

解析試題分析:(1)先求出導函數,進而由,于是,針對、兩種情況,分別求出、的解即可確定函數的單調區(qū)間;(2)①先由條件得到的一個不等關系式,再由有零點,且對函數定義域內一切滿足的實數,作出判斷的零點在內,設,則可得條件,結合即可確定的取值,進而可寫出的解析式;②設,先通過函數的導數確定函數在的單調性,進而求出的零點,進而即可求出的圖像在區(qū)間上的交點坐標.
(1)          2分
,故
時,由的單調增區(qū)間是
單調減區(qū)間是
同理時,的單調增區(qū)間,單調減區(qū)間為    5分
(2)①由(1)及(i)
又由的零點在內,設,

所以由條件
此時有      8分
     9分
②又設,先求軸在的交點
,由
單調遞增

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數,.
(1)當時,求曲線在點處的切線方程;
(2)若在區(qū)間上是減函數,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)討論函數上的單調性;
(2)當時,曲線上總存在相異兩點,,,使得曲線在處的切線互相平行,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,).
(Ⅰ)當時,求曲線在點處切線的方程;
(Ⅱ)求函數的單調區(qū)間;
(Ⅲ)當時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數).
(1)當時,求函數的單調區(qū)間;
(2)函數在定義域內是否存在零點?若存在,請指出有幾個零點;若不存在,請說明理由;
(3)若對任意恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數圖象與直線相切,切點橫坐標為.
(1)求函數的表達式和直線的方程;(2)求函數的單調區(qū)間;
(3)若不等式定義域內的任意恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,,其中m∈R.
(1)若0<m≤2,試判斷函數f (x)=f1 (x)+f2 (x)的單調性,并證明你的結論;
(2)設函數 若對任意大于等于2的實數x1,總存在唯一的小于2的實數x2,使得g (x1) =" g" (x2) 成立,試確定實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數其中a是實數.設為該函數圖象上的兩點,且
(1)指出函數f(x)的單調區(qū)間;
(2)若函數f(x)的圖象在點A,B處的切線互相垂直,且,求的最小值;
(3)若函數f(x)的圖象在點A,B處的切線重合,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求函數的單調區(qū)間和極值;
(2)當,且時,證明:

查看答案和解析>>

同步練習冊答案