設(shè)f(x)的定義域?yàn)镈,若f(x)滿(mǎn)足下面兩個(gè)條件,則稱(chēng)f(x)為閉函數(shù).

①f(x)在D內(nèi)是單調(diào)函數(shù);

②存在,使f(x)在[a,b]上的值域?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/3235/0012/6eab74c056e30a9270a2aa784f61d308/A/Image69.gif" width=36 height=21>.

如果為閉函數(shù),那么k的取值范圍是

[  ]
A.

B.

≤k<1

C.

D.

k<1

答案:A
解析:

上的增函數(shù),又上的值域?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/3235/0012/6eab74c056e30a9270a2aa784f61d308/C/Image69.gif" width=36 height=21>,∴,即上有兩個(gè)不等實(shí)根,即上有兩個(gè)不等實(shí)根.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)的定義域?yàn)镽,若存在常數(shù)M>0,使|f(x)|≤|x|對(duì)一切實(shí)數(shù)x均成立,則稱(chēng)f(x)為F函數(shù).現(xiàn)給出下列函數(shù):

①f(x)=2x;                         ②f(x)=x2+1;

③f(x)=(sinx+cosx);              ④f(x)=;

其中是F函數(shù)的函數(shù)有____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)的定義域?yàn)?0,+∞),f(x)的導(dǎo)函數(shù)為f′(x),且對(duì)任意正數(shù)x均有f′(x)>,

(Ⅰ)求證:F(x)=在(0,+∞)上是增函數(shù);

(Ⅱ)設(shè)x1,x2∈(0,+∞),比較f(x1)+f(x2)與f(x1+x2)的大小,并證明你的結(jié)論;

(Ⅲ)設(shè)x1,x2,…xn∈(0,+∞),若n≥2,比較f(x1)+f(x2)+…f(xn)與f(x1+x2+…+xn)的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)的定義域?yàn)镽,若存在常數(shù)M>0,使|f(x)|≤M|x|對(duì)一切實(shí)數(shù)x,均成立,則稱(chēng)f(x)為F函數(shù).現(xiàn)給出下列函數(shù):

①f(x)=2x;                 ②f(x)=x2+1;

③f(x)=(sinx+cosx);      ④f(x)=;

其中是F函數(shù)的函數(shù)有____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年安徽省安慶市高一三校聯(lián)考數(shù)學(xué)試卷 題型:填空題

設(shè)f(x)的定義域?yàn)閇0,2],則函數(shù)f(x2)的定義域是                         

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆安徽省安慶市三校聯(lián)考高一上學(xué)期期末考試數(shù)學(xué) 題型:填空題

設(shè)f(x)的定義域?yàn)閇0,2],則函數(shù)f(x2)的定義域是                             

 

查看答案和解析>>

同步練習(xí)冊(cè)答案