【題目】如果對(duì)一切實(shí)數(shù)x、y,不等式 ﹣cos2x≥asinx﹣ 恒成立,則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞, ]
B.[3,+∞)
C.[﹣2 ,2 ]
D.[﹣3,3]
【答案】D
【解析】解:實(shí)數(shù)x、y,不等式 ﹣cos2x≥asinx﹣ 恒成立 + ≥asinx+1﹣sin2x恒成立, 令f(y)= + ,
則asinx+1﹣sin2x≤f(y)min ,
當(dāng)y>0時(shí),f(y)= + ≥2 =3(當(dāng)且僅當(dāng)y=6時(shí)取“=”),f(y)min=3;
當(dāng)y<0時(shí),f(y)= + ≤﹣2 =﹣3(當(dāng)且僅當(dāng)y=﹣6時(shí)取“=”),f(y)max=﹣3,f(y)min不存在;
綜上所述,f(y)min=3.
所以,asinx+1﹣sin2x≤3,即asinx﹣sin2x≤2恒成立.
①若sinx>0,a≤sinx+ 恒成立,令sinx=t,則0<t≤1,再令g(t)=t+ (0<t≤1),則a≤g(t)min .
由于g′(t)=1﹣ <0,
所以,g(t)=t+ 在區(qū)間(0,1]上單調(diào)遞減,
因此,g(t)min=g(1)=3,
所以a≤3;
②若sinx<0,則a≥sinx+ 恒成立,同理可得a≥﹣3;
③若sinx=0,0≤2恒成立,故a∈R;
綜合①②③,﹣3≤a≤3.
故選:D.
將不等式 ﹣cos2x≥asinx﹣ 恒成立轉(zhuǎn)化為 + ≥asinx+1﹣sin2x恒成立,構(gòu)造函數(shù)f(y)= + ,利用基本不等式可求得f(y)min=3,于是問題轉(zhuǎn)化為asinx﹣sin2x≤2恒成立.通過對(duì)inx>0、sinx<0、sinx=0三類討論,
可求得對(duì)應(yīng)情況下的實(shí)數(shù)a的取值范圍,最后取其交集即可得到答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C,F(xiàn)為⊙O上的點(diǎn),CA是∠BAF的角平分線,過點(diǎn)C作CD⊥AF交AF的延長(zhǎng)線于D點(diǎn),CM⊥AB,垂足為點(diǎn)M.
(1)求證:DC是⊙O的切線;
(2)求證:AMMB=DFDA.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m、n是兩條不同的直線,α、β是兩個(gè)不同的平面,給出下列命題: ①若α⊥β,m∥α,則m⊥β;
②若m⊥α,n⊥β,且m⊥n,則α⊥β;
③若m⊥β,m∥α,則α⊥β;
④若m∥α,n∥β,且m∥n,則α∥β.
其中正確命題的序號(hào)是( )
A.①④
B.②③
C.②④
D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體ABCDM中,△BCD是等邊三角形,△CMD是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB⊥平面BCD.
(Ⅰ)求證:CD⊥AM;
(Ⅱ)若AM=BC=2,求直線AM與平面BDM所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中為常數(shù)).
(1)判斷函數(shù)的奇偶性;
(2)若不等式在時(shí)有解,求實(shí)數(shù)的取值范圍;
(3)設(shè),是否存在正數(shù),使得對(duì)于區(qū)間上的任意三個(gè)實(shí)數(shù),,,都存在以,,為邊長(zhǎng)的三角形?若存在,試求出這樣的的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函f(x)=lnx﹣ax2+(2﹣a)x. ①討論f(x)的單調(diào)性;
②設(shè)a>0,證明:當(dāng)0<x< 時(shí), ;
③函數(shù)y=f(x)的圖象與x軸相交于A、B兩點(diǎn),線段AB中點(diǎn)的橫坐標(biāo)為x0 , 證明f′(x0)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù) 圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來的 ,縱坐標(biāo)不變,再向右平移 個(gè)單位長(zhǎng)度,得到函數(shù)y=g(x)的圖象,則下列說法正確的是( )
A.函數(shù)g(x)的一條對(duì)稱軸是
B.函數(shù)g(x)的一個(gè)對(duì)稱中心是
C.函數(shù)g(x)的一條對(duì)稱軸是
D.函數(shù)g(x)的一個(gè)對(duì)稱中心是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某單位的職工食堂中,食堂每天以3元/個(gè)的價(jià)格從面包店購(gòu)進(jìn)面包,然后以5元/個(gè)的價(jià)格出售.如果當(dāng)天賣不完,剩下的面包以1元/個(gè)的價(jià)格賣給飼料加工廠.根據(jù)以往統(tǒng)計(jì)資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購(gòu)進(jìn)了90個(gè)面包,以x(單位:個(gè),60≤x≤110)表示面包的需求量,T(單位:元)表示利潤(rùn).
(Ⅰ)求T關(guān)于x的函數(shù)解析式;
(Ⅱ)根據(jù)直方圖估計(jì)利潤(rùn)T不少于100元的概率;
(Ⅲ)在直方圖的需求量分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中間值的概率(例如:若需求量x∈[60,70),則取x=65,且x=65的概率等于需求量落入[60,70)的頻率),求T的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四面體ABCD的頂點(diǎn)都在同一個(gè)球的球面上,BC= ,BD=4,且滿足BC⊥BD,AC⊥BC,AD⊥BD.若該三棱錐的體積為 ,則該球的球面面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com