【題目】已知某商品的進貨單價為1元/件,商戶甲往年以單價2元/件銷售該商品時,年銷量為1萬件.今年擬下調(diào)銷售單價以提高銷量增加收益.據(jù)估算,若今年的實際銷售單價為元/件,則新增的年銷量(萬件).
(Ⅰ)寫出今年商戶甲的收益(單位:萬元)與的函數(shù)關系式;
(Ⅱ)商戶甲今年采取降低單價提高銷量的營銷策略,是否能獲得比往年更大的收益(即比往年收益更多)?請說明理由.
【答案】(Ⅰ) ;(Ⅱ)見解析.
【解析】分析:(Ⅰ)先表示出年銷售量和單件利潤,進而得到收益的表達式,并寫出定義域;(Ⅱ)求導,利用導數(shù)的符號變化確定函數(shù)的單調(diào)性和極值,進而求出函數(shù)的最值,再與去年的收益比較得到答案.
詳解:(Ⅰ)由題意知,今年的年銷售量為(萬件).
因為每銷售一件,商戶甲可獲利元,
所以今年商戶甲的收益
(Ⅱ)由
得
令,解得或
當時,,是增函數(shù);
當時,,是減函數(shù);
當時,,是增函數(shù);
∴為極大值點,極大值為
∵,∴當或2時,在區(qū)間上的最大值為1(萬元),而往年的收益為(萬元),
所以商戶甲采取降低單價提高銷量的營銷策略不能獲得比往年更大的收益.
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)在定義域內(nèi)存在實數(shù),使得成立,則稱函數(shù)有“飄移點”.
Ⅰ試判斷函數(shù)及函數(shù)是否有“飄移點”并說明理由;
Ⅱ若函數(shù)有“飄移點”,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】古希臘亞歷山大時期的數(shù)學家帕普斯(Pappus,約300~約350)在《數(shù)學匯編》第3卷中記載著一個定理:“如果同一平面內(nèi)的一個閉合圖形的內(nèi)部與一條直線不相交,那么該閉合圖形圍繞這條直線旋轉一周所得到的旋轉體的體積等于閉合圖形面積乘以重心旋轉所得周長的積.”如圖,半圓的直徑,點是該半圓弧的中點,半圓弧與直徑所圍成的半圓面(陰影部分不含邊界)的重心位于對稱軸上.若半圓面繞直徑所在直線旋轉一周,則所得到的旋轉體的體積為__________,___________________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知球O是正三棱錐(底面為正三角形,頂點在底面的射影為底面中心)A-BCD的外接球,BC=3,,點E在線段BD上,且BD=3BE,過點E作圓O的截面,則所得截面圓面積的取值范圍是__.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列有關命題的說法錯誤的是( 。
A.若“p∨q”為假命題,則p,q均為假命題
B.“x=1”是“x≥1”的充分不必要條件
C.“sinx=”的必要不充分條件是“x=”
D.若命題p:?x0∈R,x02≥0,則命題¬p:?x∈R,x2<0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com