【題目】下列有關(guān)命題的說(shuō)法錯(cuò)誤的是( 。
A.若“p∨q”為假命題,則p,q均為假命題
B.“x=1”是“x≥1”的充分不必要條件
C.“sinx=”的必要不充分條件是“x=
D.若命題p:?x0∈R,x02≥0,則命題¬p:?x∈R,x2<0

【答案】C
【解析】解:若“p∨q”為假命題,則p,q均為假命題,故A正確;
“x=1”時(shí),“x≥1”成立,“x≥1”時(shí),“x=1”不一定成立,故“x=1”是“x≥1”的充分不必要條件,故B正確;
“sinx=”時(shí),“x=”不一定成立,“x=”時(shí),“sinx=”成立,故“sinx=”的充分不必要條件是“x=”,故C錯(cuò)誤;
若命題p:x0∈R,x02≥0,則命題¬p:x∈R,x2<0,故D正確;
故選:C.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解命題的真假判斷與應(yīng)用(兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某商品的進(jìn)貨單價(jià)為1元/件,商戶甲往年以單價(jià)2元/件銷(xiāo)售該商品時(shí),年銷(xiāo)量為1萬(wàn)件.今年擬下調(diào)銷(xiāo)售單價(jià)以提高銷(xiāo)量增加收益.據(jù)估算,若今年的實(shí)際銷(xiāo)售單價(jià)為元/件,則新增的年銷(xiāo)量(萬(wàn)件).

(Ⅰ)寫(xiě)出今年商戶甲的收益(單位:萬(wàn)元)與的函數(shù)關(guān)系式;

(Ⅱ)商戶甲今年采取降低單價(jià)提高銷(xiāo)量的營(yíng)銷(xiāo)策略,是否能獲得比往年更大的收益(即比往年收益更多)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,則下列命題正確的是 . (填寫(xiě)所有正確命題的序號(hào)) ①若sinAsinB=2sin2C,則0<C< ;
②若a+b>2c,則0<C< ;
③若a4+b4=c4 . 則△ABC為銳角三角形;
④若(a+b)c<2ab,則C>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)若函數(shù)上為增函數(shù),求正實(shí)數(shù)的取值范圍;

(Ⅱ)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

若函數(shù),求上的最小值;

記函數(shù),若函數(shù)上有兩個(gè)零點(diǎn),,求實(shí)數(shù)a的取值范圍,并證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種蔬菜從1月1日起開(kāi)始上市,通過(guò)市場(chǎng)調(diào)查,得到該蔬菜種植成本(單位:元/)與上市時(shí)間(單位:10天)的數(shù)據(jù)如下表:

時(shí)間

5

11

25

種植成本

15

10.8

15

(1)根據(jù)上表數(shù)據(jù),從下列函數(shù):,,中(其中),選取一個(gè)合適的函數(shù)模型描述該蔬菜種植成本與上市時(shí)間的變化關(guān)系;

(2)利用你選取的函數(shù)模型,求該蔬菜種植成本最低時(shí)的上市時(shí)間及最低種植成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,且cosC+=1.
(1)求角A的大。
(2)若a=1,求△ABC的周長(zhǎng)l的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)=+,其中a>0且a≠1。

(1)求函數(shù)的定義域;

(2)若函數(shù)有最小值而無(wú)最大值,求的單調(diào)增區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn . 已知a1=10,a2為整數(shù),且Sn≤S4
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案